Determining wavelength-dependent quantum yields of photodegradation: importance of experimental setup and reference values for actinometers

Luana de Brito Anton, Andrea I. Silverman, Jennifer Apell

Research output: Contribution to journalArticlepeer-review


Accurate quantum yields are crucial for modeling photochemical reactions in natural and engineered treatment systems. Quantum yields are usually determined using a single representative light source such as xenon lamps to mimic sunlight or UVC light for water treatment. However, photodegradation modeling can be improved by understanding the wavelength dependence of quantum yields and the potential errors introduced by the experimental setup. In this study, we investigated the effects of experimental setup on measured quantum yields using four photoreactor systems and up to 11 different light sources. When using a calibrated spectroradiometer to measure incident irradiance on an open solution surface, apparent quantum yields were up to two times higher if light reflection and light screening were not accounted for in the experimental setup. When the experimental setup was optimized to allow for accurate irradiance measurements, quantum yields were reproducible across photoreactors. The optimized experimental setup was then used to determine quantum yields of uridine, atrazine, p-nitroanisole (PNA), sulfamethoxazole, and diclofenac across the UV spectrum. No significant wavelength dependence of quantum yields was observed for sulfamethoxazole and diclofenac, in contrast to wavelength-dependent quantum yields for uridine, atrazine, and PNA. These reference values can be used for determining wavelength-dependent quantum yields of other compounds of interest. Additionally, more accurate results can be obtained when using (1) an actinometer with similar light absorption and photoreactivity compared to that of the target chemical, (2) optically transparent actinometer solutions that can account for light reflection within reaction vessels, and (3) a quantum yield that corresponds to the spectrum of the selected light source.

Original languageEnglish (US)
Pages (from-to)1052-1063
Number of pages12
JournalEnvironmental Science: Processes and Impacts
Issue number6
StatePublished - May 1 2024

ASJC Scopus subject areas

  • Environmental Chemistry
  • Public Health, Environmental and Occupational Health
  • Management, Monitoring, Policy and Law


Dive into the research topics of 'Determining wavelength-dependent quantum yields of photodegradation: importance of experimental setup and reference values for actinometers'. Together they form a unique fingerprint.

Cite this