Development of a guided bone regeneration device using salicylic acid-poly(anhydride-ester) polymers and osteoconductive scaffolds

Ashley Mitchell, Brian Kim, Jessica Cottrell, Sabrina Snyder, Lukasz Witek, John Ricci, Kathryn E. Uhrich, J. Patrick O'Connor

Research output: Contribution to journalArticlepeer-review

Abstract

Successful repair of craniofacial and periodontal tissue defects ideally involves a combined therapy that includes inflammation modulation, control of soft tissue infiltration, and bone regeneration. In this study, an anti-inflammatory polymer, salicylic acid-based poly(anhydride-ester) (SAPAE) and a three-dimensional osteoconductive ceramic scaffold were evaluated as a combined guided bone regeneration (GBR) system for concurrent control of inflammation, soft tissue ingrowth, and bone repair in a rabbit cranial defect model. At time periods of 1, 3, and 8 weeks, five groups were compared: (1) scaffolds with a solid ceramic cap (as a GBR structure); (2) scaffolds with no cap; (3) scaffolds with a poly(lactide-glycolide) cap; (4) scaffolds with a slow release SAPAE polymer cap; and (5) scaffolds with a fast release SAPAE polymer cap. Cellular infiltration and bone formation in these scaffolds were evaluated to assess inflammation and bone repair capacity of the test groups. The SAPAE polymers suppressed inflammation and displayed no deleterious effect on bone formation. Additional work is warranted to optimize the anti-inflammatory action of the SAPAE, GBR suppression of soft tissue infiltration, and stimulation of bone formation in the scaffolds and create a composite device for successful repair of craniofacial and periodontal tissue defects. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 655-664, 2014.

Original languageEnglish (US)
Pages (from-to)655-664
Number of pages10
JournalJournal of Biomedical Materials Research - Part A
Volume102
Issue number3
DOIs
StatePublished - Mar 2014

Keywords

  • bone regeneration
  • guided bone regeneration
  • inflammation
  • salicylic acid-based poly(anhydride-ester) polymer
  • tissue engineering

ASJC Scopus subject areas

  • Ceramics and Composites
  • Biomaterials
  • Biomedical Engineering
  • Metals and Alloys

Fingerprint

Dive into the research topics of 'Development of a guided bone regeneration device using salicylic acid-poly(anhydride-ester) polymers and osteoconductive scaffolds'. Together they form a unique fingerprint.

Cite this