Abstract
Developmental endothelial locus-1 (DEL-1) has traditionally been characterized within the scientific community as having anti-inflammatory properties with potential inhibitory effects on osteoclast formation. Our investigation challenges this paradigm by examining Del-1 expression in RAW264.7 cells and bone marrow-derived macrophages (BMMs) during osteoclastogenesis, as well as its functional impact on osteoclast development and activity. Our experimental findings revealed that Del-1 mRNA levels were markedly elevated in cells stimulated by the receptor activator of the nuclear factor κB ligand compared to unstimulated precursors. When cultured with varying concentrations of recombinant DEL-1, osteoclast differentiation increased in a dose-dependent manner. Furthermore, BMMs isolated from ovariectomized mice exhibited significantly higher Del-1 mRNA expression than those from control animals. To confirm DEL-1’s role, we employed RNA interference techniques, demonstrating that DEL-1 silencing in RAW264.7 cells substantially reduced osteoclast formation. These results suggest that DEL-1 plays a previously unrecognized role in promoting osteoclastogenesis and may contribute to bone metabolism imbalances in conditions like osteoporosis, highlighting its complex role in skeletal homeostasis and its potential as a therapeutic target.
Original language | English (US) |
---|---|
Article number | 2673 |
Journal | International journal of molecular sciences |
Volume | 26 |
Issue number | 6 |
DOIs | |
State | Published - Mar 2025 |
Keywords
- bone metabolism
- DEL-1
- osteoclasts
- osteoporosis
ASJC Scopus subject areas
- Catalysis
- Molecular Biology
- Spectroscopy
- Computer Science Applications
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry