Abstract
We evaluated whether the genetic background of embryonic stem cells (ESCs) affects the properties suitable for three-dimensional (3D) synthetic scaffolds for cell self-renewal. Inbred R1 and hybrid B6D2F1 mouse ESC lines were cultured for 7 days in hydrogel scaffolds with different properties derived from conjugating 7.5, 10, 12.5, or 15% (wt/vol) vinylsulfone-functionalized three-, four-, or eight-arm polyethylene glycol (PEG) with dicysteine-containing crosslinkers with an intervening matrix metalloproteinase-specific cleavage sites. Cell proliferation and expression of self-renewal-related genes and proteins by ESCs cultured in feeder-free or containing 2D culture plate or 3D hydrogel were monitored. As a preliminary experiment, the E14 ESC-customized synthetic 3D microenvironment did not maintain self-renewal of either the R1 or B6D2F1 ESCs. The best R1 cell proliferation (10.04 vs. 0.16–4.39; p < 0.0001) was observed in the four-arm 7.5% PEG-based hydrogels than those with other properties, whereas the F1 ESCs showed better proliferation when they were embedded in the three-arm 10% hydrogels. Self-renewal-related gene and protein expression by ESCs after feeder-free 3D culture was generally maintained compared with the feeder-containing 2D culture, but expression patterns and quantities differed. However, the feeder-free 3D culture yielded better expression than the feeder-free 2D culture. In conclusion, genetic background determined the suitability of hydrogel scaffolds for self-renewal of ESCs, which requires customization for the mechanical properties of each cell line.
Original language | English (US) |
---|---|
Pages (from-to) | 2261-2268 |
Number of pages | 8 |
Journal | Journal of Biomedical Materials Research - Part B Applied Biomaterials |
Volume | 105 |
Issue number | 8 |
DOIs | |
State | Published - Nov 2017 |
Keywords
- embryonic stem cells
- genetic background
- polyethylene glycol-based hydrogel
- self-renewal
- three-dimensional synthetic hydrogel scaffold
ASJC Scopus subject areas
- Biomaterials
- Biomedical Engineering