TY - JOUR
T1 - Differentiable Registration of Images and LiDAR Point Clouds with VoxelPoint-to-Pixel Matching
AU - Zhou, Junsheng
AU - Ma, Baorui
AU - Zhang, Wenyuan
AU - Fang, Yi
AU - Liu, Yu Shen
AU - Han, Zhizhong
N1 - Publisher Copyright:
© 2023 Neural information processing systems foundation. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Cross-modality registration between 2D images from cameras and 3D point clouds from LiDARs is a crucial task in computer vision and robotic. Previous methods estimate 2D-3D correspondences by matching point and pixel patterns learned by neural networks, and use Perspective-n-Points (PnP) to estimate rigid transformation during post-processing. However, these methods struggle to map points and pixels to a shared latent space robustly since points and pixels have very different characteristics with patterns learned in different manners (MLP and CNN), and they also fail to construct supervision directly on the transformation since the PnP is non-differentiable, which leads to unstable registration results. To address these problems, we propose to learn a structured cross-modality latent space to represent pixel features and 3D features via a differentiable probabilistic PnP solver. Specifically, we design a triplet network to learn VoxelPoint-to-Pixel matching, where we represent 3D elements using both voxels and points to learn the cross-modality latent space with pixels. We design both the voxel and pixel branch based on CNNs to operate convolutions on voxels/pixels represented in grids, and integrate an additional point branch to regain the information lost during voxelization. We train our framework end-to-end by imposing supervisions directly on the predicted pose distribution with a probabilistic PnP solver. To explore distinctive patterns of cross-modality features, we design a novel loss with adaptive-weighted optimization for cross-modality feature description. The experimental results on KITTI and nuScenes datasets show significant improvements over the state-of-the-art methods. The code and models are available at https://github.com/junshengzhou/VP2P-Match.
AB - Cross-modality registration between 2D images from cameras and 3D point clouds from LiDARs is a crucial task in computer vision and robotic. Previous methods estimate 2D-3D correspondences by matching point and pixel patterns learned by neural networks, and use Perspective-n-Points (PnP) to estimate rigid transformation during post-processing. However, these methods struggle to map points and pixels to a shared latent space robustly since points and pixels have very different characteristics with patterns learned in different manners (MLP and CNN), and they also fail to construct supervision directly on the transformation since the PnP is non-differentiable, which leads to unstable registration results. To address these problems, we propose to learn a structured cross-modality latent space to represent pixel features and 3D features via a differentiable probabilistic PnP solver. Specifically, we design a triplet network to learn VoxelPoint-to-Pixel matching, where we represent 3D elements using both voxels and points to learn the cross-modality latent space with pixels. We design both the voxel and pixel branch based on CNNs to operate convolutions on voxels/pixels represented in grids, and integrate an additional point branch to regain the information lost during voxelization. We train our framework end-to-end by imposing supervisions directly on the predicted pose distribution with a probabilistic PnP solver. To explore distinctive patterns of cross-modality features, we design a novel loss with adaptive-weighted optimization for cross-modality feature description. The experimental results on KITTI and nuScenes datasets show significant improvements over the state-of-the-art methods. The code and models are available at https://github.com/junshengzhou/VP2P-Match.
UR - http://www.scopus.com/inward/record.url?scp=85205586521&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85205586521&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85205586521
SN - 1049-5258
VL - 36
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
Y2 - 10 December 2023 through 16 December 2023
ER -