TY - JOUR
T1 - Digital phenotyping self-monitoring behaviors for individuals with type 2 diabetes mellitus
T2 - Observational study using latent class growth analysis
AU - Yang, Qing
AU - Hatch, Daniel
AU - Crowley, Matthew J.
AU - Lewinski, Allison A.
AU - Vaughn, Jacqueline
AU - Steinberg, Dori
AU - Vorderstrasse, Allison
AU - Jiang, Meilin
AU - Shaw, Ryan J.
N1 - Funding Information:
This study was funded by a grant from the US National Institutes of Health, the National Institute of Nursing Research (NINR 1R15NR015890 to RS, QY, DS, AV, MC), a Duke University Center for Nursing Research Pilot grant (QY), and a Duke University Data+ grant (RS). This study was also supported by the Building Interdisciplinary Careers in Women’s Health Career Development Award (K12HD043446 to DS); US Department of Veterans Affairs Office of Academic Affiliations (grant No. TPH 21-000 to AL); Durham Center of Innovation to Accelerate Discovery and Practice Transformation (Grant No. CIN 13-410 to MC and AL); and the US National Institutes of Health (NINR F31NR018100 to JV). The content is solely the responsibility of the authors and does not necessarily reflect the position or policy of Duke University, the US Department of Veterans Affairs, or the US government. The authors acknowledge iHealth for donation of devices and would like to thank Angel Barnes, the study coordinator, for her dedication to assure the accuracy of the data, and Judith C. Hays and Karen Judge for editorial assistance.
Publisher Copyright:
© Qing Yang, Daniel Hatch, Matthew J Crowley, Allison A Lewinski, Jacqueline Vaughn, Dori Steinberg, Allison Vorderstrasse, Meilin Jiang, Ryan J Shaw.
PY - 2020/6/1
Y1 - 2020/6/1
N2 - Background: Sustained self-monitoring and self-management behaviors are crucial to maintain optimal health for individuals with type 2 diabetes mellitus (T2DM). As smartphones and mobile health (mHealth) devices become widely available, self-monitoring using mHealth devices is an appealing strategy in support of successful self-management of T2DM. However, research indicates that engagement with mHealth devices decreases over time. Thus, it is important to understand engagement trajectories to provide varying levels of support that can improve self-monitoring and self-management behaviors. Objective: The aims of this study were to develop (1) digital phenotypes of the self-monitoring behaviors of patients with T2DM based on their engagement trajectory of using multiple mHealth devices, and (2) assess the association of individual digital phenotypes of self-monitoring behaviors with baseline demographic and clinical characteristics. Methods: This longitudinal observational feasibility study included 60 participants with T2DM who were instructed to monitor their weight, blood glucose, and physical activity using a wireless weight scale, phone-tethered glucometer, and accelerometer, respectively, over 6 months. We used latent class growth analysis (LCGA) with multitrajectory modeling to associate the digital phenotypes of participants’ self-monitoring behaviors based on their engagement trajectories with multiple mHealth devices. Associations between individual characteristics and digital phenotypes on participants’ self-monitoring behavior were assessed by analysis of variance or the Chi square test. Results: The engagement with accelerometers to monitor daily physical activities was consistently high for all participants over time. Three distinct digital phenotypes were identified based on participants’ engagement with the wireless weight scale and glucometer: (1) low and waning engagement group (24/60, 40%), (2) medium engagement group (20/60, 33%), and (3) consistently high engagement group (16/60, 27%). Participants that were younger, female, nonwhite, had a low income, and with a higher baseline hemoglobin A1c level were more likely to be in the low and waning engagement group. Conclusions: We demonstrated how to digitally phenotype individuals’ self-monitoring behavior based on their engagement trajectory with multiple mHealth devices. Distinct self-monitoring behavior groups were identified. Individual demographic and clinical characteristics were associated with different self-monitoring behavior groups. Future research should identify methods to provide tailored support for people with T2DM to help them better monitor and manage their condition.
AB - Background: Sustained self-monitoring and self-management behaviors are crucial to maintain optimal health for individuals with type 2 diabetes mellitus (T2DM). As smartphones and mobile health (mHealth) devices become widely available, self-monitoring using mHealth devices is an appealing strategy in support of successful self-management of T2DM. However, research indicates that engagement with mHealth devices decreases over time. Thus, it is important to understand engagement trajectories to provide varying levels of support that can improve self-monitoring and self-management behaviors. Objective: The aims of this study were to develop (1) digital phenotypes of the self-monitoring behaviors of patients with T2DM based on their engagement trajectory of using multiple mHealth devices, and (2) assess the association of individual digital phenotypes of self-monitoring behaviors with baseline demographic and clinical characteristics. Methods: This longitudinal observational feasibility study included 60 participants with T2DM who were instructed to monitor their weight, blood glucose, and physical activity using a wireless weight scale, phone-tethered glucometer, and accelerometer, respectively, over 6 months. We used latent class growth analysis (LCGA) with multitrajectory modeling to associate the digital phenotypes of participants’ self-monitoring behaviors based on their engagement trajectories with multiple mHealth devices. Associations between individual characteristics and digital phenotypes on participants’ self-monitoring behavior were assessed by analysis of variance or the Chi square test. Results: The engagement with accelerometers to monitor daily physical activities was consistently high for all participants over time. Three distinct digital phenotypes were identified based on participants’ engagement with the wireless weight scale and glucometer: (1) low and waning engagement group (24/60, 40%), (2) medium engagement group (20/60, 33%), and (3) consistently high engagement group (16/60, 27%). Participants that were younger, female, nonwhite, had a low income, and with a higher baseline hemoglobin A1c level were more likely to be in the low and waning engagement group. Conclusions: We demonstrated how to digitally phenotype individuals’ self-monitoring behavior based on their engagement trajectory with multiple mHealth devices. Distinct self-monitoring behavior groups were identified. Individual demographic and clinical characteristics were associated with different self-monitoring behavior groups. Future research should identify methods to provide tailored support for people with T2DM to help them better monitor and manage their condition.
KW - Digital phenotype
KW - Latent class growth analysis
KW - Mobile health
KW - Self-management
KW - Self-monitoring
KW - Type 2 diabetes
KW - Humans
KW - Middle Aged
KW - Male
KW - Exercise
KW - Diabetes Mellitus, Type 2/therapy
KW - Telemedicine
KW - Blood Glucose Self-Monitoring
KW - Female
KW - Glycated Hemoglobin A/analysis
UR - http://www.scopus.com/inward/record.url?scp=85086355416&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85086355416&partnerID=8YFLogxK
U2 - 10.2196/17730
DO - 10.2196/17730
M3 - Article
C2 - 32525492
AN - SCOPUS:85086355416
SN - 2291-5222
VL - 8
JO - JMIR mHealth and uHealth
JF - JMIR mHealth and uHealth
IS - 6
M1 - e17730
ER -