Abstract
RNA aptamers that generate a strong fluorescence signal upon binding a nonfluorescent small-molecule dye offer a powerful means for the selective imaging of individual RNA species. Unfortunately, conventional in vitro discovery methods are not efficient at generating such fluorescence-enhancing aptamers, because they primarily exert selective pressure based on target affinity - a characteristic that correlates poorly with fluorescence enhancement. Thus, only a handful of fluorescence-enhancing aptamers have been reported to date. In this work, we describe a method for converting DNA libraries into "gene-linked RNA aptamer particles" (GRAPs) that each display ∼105 copies of a single RNA sequence alongside the DNA that encodes it. We then screen large libraries of GRAPs in a high-throughput manner using the FACS instrument based directly on their fluorescence-enhancing properties. Using this strategy, we demonstrate the capability to generate fluorescence-enhancing aptamers that produce a variety of different emission wavelengths upon binding the dye of interest.
Original language | English (US) |
---|---|
Pages (from-to) | 3583-3591 |
Number of pages | 9 |
Journal | Journal of the American Chemical Society |
Volume | 140 |
Issue number | 10 |
DOIs | |
State | Published - Mar 14 2018 |
ASJC Scopus subject areas
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry