Direct Visual and Haptic Volume Rendering of Medical Data Sets for an Immersive Exploration in Virtual Reality

Balázs Faludi, Esther I. Zoller, Nicolas Gerig, Azhar Zam, Georg Rauter, Philippe C. Cattin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Visual examination of volumetric medical data sets in virtual reality offers an intuitive and immersive experience. To further increase the realism of virtual environments, haptic feedback can be added. Such systems can help students to gain anatomical knowledge or surgeons to prepare for specific interventions. In this work, we present a method for direct visual and haptic rendering of volumetric medical data sets in virtual reality. This method guarantees a continuous force field and does not rely on any mesh or surface generation. Using a transfer function, we mapped computed tomography voxel intensities to color and opacity values and then visualized the anatomical structures using a direct volume rendering approach. A continuous haptic force field was generated based on a conservative potential field computed from the voxel opacities. In a path following experiment, we showed that the deviation from a reference path on the surface of the rendered anatomical structure decreased with the added haptic feedback. This system demonstrates an immersive exploration of anatomy and is a step towards patient-specific surgical planning and simulation.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
PublisherSpringer Science and Business Media Deutschland GmbH
Pages29-37
Number of pages9
ISBN (Print)9783030322533
DOIs
StatePublished - 2019
Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: Oct 13 2019Oct 17 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11768 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Country/TerritoryChina
CityShenzhen
Period10/13/1910/17/19

Keywords

  • CT
  • Haptic rendering
  • Human-robot interaction
  • Medical simulation
  • Surgical planning

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Direct Visual and Haptic Volume Rendering of Medical Data Sets for an Immersive Exploration in Virtual Reality'. Together they form a unique fingerprint.

Cite this