TY - GEN
T1 - Directional noise reduction VIA asymmetric downstream fluidic injection
AU - Rajput, Pankaj
AU - Kumar, Sunil
N1 - Publisher Copyright:
Copyright © 2017 ASME.
PY - 2017
Y1 - 2017
N2 - The main aim of this investigation is to analyze directional noise reduction resulting from asymmetric high momentum fluidic injection downstream of a Mach 0.9 nozzle. Jet noise has been identified as one of the primary obstacles to increasing commercial aviation capacity. Microjets in cross flow are known to enhance turbulent mixing in the shear layer due to the induced stream-wise vortices. This enhanced mixing can be used for reorganizing the spatial distribution of acoustic energy. Targeted reduction in the downward-emitted turbulent mixing noise can be achieved by strategically injecting high momentum fluid downstream of the jet exhaust. Detailed Large Eddy Simulations were performed on a hybrid block structured-unstructured mesh to generate the flow field which was then used for near field and far field noise computation. Aeroacoustic analogy based formulation was used for computing far-field noise estimation. Benchmark cases were validated with preexisting experimental data sets. Mean flow measurements suggest shorter jet core lengths due to the enhanced mixing resulting from fluidic injection. The induced asymmetry due to the fluidic injection gives rise to an asymmetric acoustic field leading to targeted directional noise reduction in the far field as measured by pressure probes.
AB - The main aim of this investigation is to analyze directional noise reduction resulting from asymmetric high momentum fluidic injection downstream of a Mach 0.9 nozzle. Jet noise has been identified as one of the primary obstacles to increasing commercial aviation capacity. Microjets in cross flow are known to enhance turbulent mixing in the shear layer due to the induced stream-wise vortices. This enhanced mixing can be used for reorganizing the spatial distribution of acoustic energy. Targeted reduction in the downward-emitted turbulent mixing noise can be achieved by strategically injecting high momentum fluid downstream of the jet exhaust. Detailed Large Eddy Simulations were performed on a hybrid block structured-unstructured mesh to generate the flow field which was then used for near field and far field noise computation. Aeroacoustic analogy based formulation was used for computing far-field noise estimation. Benchmark cases were validated with preexisting experimental data sets. Mean flow measurements suggest shorter jet core lengths due to the enhanced mixing resulting from fluidic injection. The induced asymmetry due to the fluidic injection gives rise to an asymmetric acoustic field leading to targeted directional noise reduction in the far field as measured by pressure probes.
UR - http://www.scopus.com/inward/record.url?scp=85040921642&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85040921642&partnerID=8YFLogxK
U2 - 10.1115/IMECE2017-71258
DO - 10.1115/IMECE2017-71258
M3 - Conference contribution
AN - SCOPUS:85040921642
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Advances in Aerospace Technology
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017
Y2 - 3 November 2017 through 9 November 2017
ER -