Discovering hidden variables in noisy-or networks using quartet tests

Yacine Jernite, Yoni Halpern, David Sontag

Research output: Contribution to journalConference articlepeer-review


We give a polynomial-time algorithm for provably learning the structure and parameters of bipartite noisy-or Bayesian networks of binary variables where the top layer is completely hidden. Unsupervised learning of these models is a form of discrete factor analysis, enabling the discovery of hidden variables and their causal relationships with observed data. We obtain an efficient learning algorithm for a family of Bayesian networks that we call quartet-learnable. For each latent variable, the existence of a singly-coupled quartet allows us to uniquely identify and learn all parameters involving that latent variable. We give a proof of the polynomial sample complexity of our learning algorithm, and experimentally compare it to variational EM.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
StatePublished - 2013
Event27th Annual Conference on Neural Information Processing Systems, NIPS 2013 - Lake Tahoe, NV, United States
Duration: Dec 5 2013Dec 10 2013

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing


Dive into the research topics of 'Discovering hidden variables in noisy-or networks using quartet tests'. Together they form a unique fingerprint.

Cite this