Abstract
We demonstrate a scanning near-field microwave microscope (NSMM) in the liquid environment using a tuning fork shear-force feedback method to control the distance between tip and sample. Only the probe tip for the NSMM is immersed in water. The dry part of the probe is attached to one prong of a quartz tuning fork and directly coupled to a high-quality dielectric resonator at an operating frequency f=4.5-5.5 GHz. This distance control method is independent of the local microwave characteristics. The amplitude of the tuning fork was used as a set point of the distance control parameter in the liquid. To demonstrate the distance regulation system, we present the NSMM images of a copper film in air and liquid without and with readjustment of the distance set point, as well as an image of a DNA film in buffer solution. Imaging under buffer environments is of particular interest for future studies of biomolecular association reactions on solid supports.
Original language | English (US) |
---|---|
Article number | 153506 |
Pages (from-to) | 1-3 |
Number of pages | 3 |
Journal | Applied Physics Letters |
Volume | 86 |
Issue number | 15 |
DOIs | |
State | Published - 2005 |
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)