TY - GEN
T1 - Distinct patterns of syntactic agreement errors in recurrent networks and humans
AU - Linzen, Tal
AU - Leonard, Brian
N1 - Publisher Copyright:
© 2018 Proceedings of the 40th Annual Meeting of the Cognitive Science Society, CogSci 2018. All rights reserved.
PY - 2018
Y1 - 2018
N2 - Determining the correct form of a verb in context requires an understanding of the syntactic structure of the sentence. Recurrent neural networks have been shown to perform this task with an error rate comparable to humans, despite the fact that they are not designed with explicit syntactic representations. To examine the extent to which the syntactic representations of these networks are similar to those used by humans when processing sentences, we compare the detailed pattern of errors that RNNs and humans make on this task. Despite significant similarities (attraction errors, asymmetry between singular and plural subjects), the error patterns differed in important ways. In particular, in complex sentences with relative clauses error rates increased in RNNs but decreased in humans. Furthermore, RNNs showed a cumulative effect of attractors but humans did not. We conclude that at least in some respects the syntactic representations acquired by RNNs are fundamentally different from those used by humans.
AB - Determining the correct form of a verb in context requires an understanding of the syntactic structure of the sentence. Recurrent neural networks have been shown to perform this task with an error rate comparable to humans, despite the fact that they are not designed with explicit syntactic representations. To examine the extent to which the syntactic representations of these networks are similar to those used by humans when processing sentences, we compare the detailed pattern of errors that RNNs and humans make on this task. Despite significant similarities (attraction errors, asymmetry between singular and plural subjects), the error patterns differed in important ways. In particular, in complex sentences with relative clauses error rates increased in RNNs but decreased in humans. Furthermore, RNNs showed a cumulative effect of attractors but humans did not. We conclude that at least in some respects the syntactic representations acquired by RNNs are fundamentally different from those used by humans.
KW - Psycholinguistics
KW - agreement attraction
KW - recurrent neural networks
KW - syntax
UR - http://www.scopus.com/inward/record.url?scp=85139560069&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85139560069&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85139560069
T3 - Proceedings of the 40th Annual Meeting of the Cognitive Science Society, CogSci 2018
SP - 690
EP - 695
BT - Proceedings of the 40th Annual Meeting of the Cognitive Science Society, CogSci 2018
PB - The Cognitive Science Society
T2 - 40th Annual Meeting of the Cognitive Science Society: Changing Minds, CogSci 2018
Y2 - 25 July 2018 through 28 July 2018
ER -