TY - GEN
T1 - Distribution-Free Uncertainty Quantification in Mechanical Ventilation Treatment
T2 - 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
AU - Eghbali, Niloufar
AU - Alhanai, Tuka
AU - Ghassemi, Mohammad M.
N1 - Publisher Copyright:
Copyright © 2025, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2025/4/11
Y1 - 2025/4/11
N2 - Mechanical Ventilation (MV) is a critical life-support intervention in intensive care units (ICUs). However, optimal ventilator settings are challenging to determine because of the complexity of balancing patient-specific physiological needs with the risks of adverse outcomes that impact morbidity, mortality, and healthcare costs. This study introduces ConformalDQN, a novel distribution-free conformal deep Q-learning approach for optimizing mechanical ventilation in intensive care units. By integrating conformal prediction with deep reinforcement learning, our method provides reliable uncertainty quantification, addressing the challenges of Q-value overestimation and out-of-distribution actions in offline settings. We trained and evaluated our model using ICU patient records from the MIMIC-IV database. ConformalDQN extends the Double DQN architecture with a conformal predictor and employs a composite loss function that balances Q-learning with well-calibrated probability estimation. This enables uncertainty-aware action selection, allowing the model to avoid potentially harmful actions in unfamiliar states and handle distribution shift by being more conservative in out-of-distribution scenarios. Evaluation against baseline models, including physician policies, policy constraint methods, and behavior cloning, demonstrates that ConformalDQN consistently makes recommendations within clinically safe and relevant ranges, outperforming other methods by increasing the 90-day survival rate. Notably, our approach provides an interpretable measure of confidence in its decisions, crucial for clinical adoption and potential human-in-the-loop implementations.
AB - Mechanical Ventilation (MV) is a critical life-support intervention in intensive care units (ICUs). However, optimal ventilator settings are challenging to determine because of the complexity of balancing patient-specific physiological needs with the risks of adverse outcomes that impact morbidity, mortality, and healthcare costs. This study introduces ConformalDQN, a novel distribution-free conformal deep Q-learning approach for optimizing mechanical ventilation in intensive care units. By integrating conformal prediction with deep reinforcement learning, our method provides reliable uncertainty quantification, addressing the challenges of Q-value overestimation and out-of-distribution actions in offline settings. We trained and evaluated our model using ICU patient records from the MIMIC-IV database. ConformalDQN extends the Double DQN architecture with a conformal predictor and employs a composite loss function that balances Q-learning with well-calibrated probability estimation. This enables uncertainty-aware action selection, allowing the model to avoid potentially harmful actions in unfamiliar states and handle distribution shift by being more conservative in out-of-distribution scenarios. Evaluation against baseline models, including physician policies, policy constraint methods, and behavior cloning, demonstrates that ConformalDQN consistently makes recommendations within clinically safe and relevant ranges, outperforming other methods by increasing the 90-day survival rate. Notably, our approach provides an interpretable measure of confidence in its decisions, crucial for clinical adoption and potential human-in-the-loop implementations.
UR - http://www.scopus.com/inward/record.url?scp=105003907077&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105003907077&partnerID=8YFLogxK
U2 - 10.1609/aaai.v39i27.35013
DO - 10.1609/aaai.v39i27.35013
M3 - Conference contribution
AN - SCOPUS:105003907077
T3 - Proceedings of the AAAI Conference on Artificial Intelligence
SP - 27960
EP - 27968
BT - Special Track on AI Alignment
A2 - Walsh, Toby
A2 - Shah, Julie
A2 - Kolter, Zico
PB - Association for the Advancement of Artificial Intelligence
Y2 - 25 February 2025 through 4 March 2025
ER -