Distribution-Free Uncertainty Quantification in Mechanical Ventilation Treatment: A Conformal Deep Q-Learning Framework

Niloufar Eghbali, Tuka Alhanai, Mohammad M. Ghassemi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Mechanical Ventilation (MV) is a critical life-support intervention in intensive care units (ICUs). However, optimal ventilator settings are challenging to determine because of the complexity of balancing patient-specific physiological needs with the risks of adverse outcomes that impact morbidity, mortality, and healthcare costs. This study introduces ConformalDQN, a novel distribution-free conformal deep Q-learning approach for optimizing mechanical ventilation in intensive care units. By integrating conformal prediction with deep reinforcement learning, our method provides reliable uncertainty quantification, addressing the challenges of Q-value overestimation and out-of-distribution actions in offline settings. We trained and evaluated our model using ICU patient records from the MIMIC-IV database. ConformalDQN extends the Double DQN architecture with a conformal predictor and employs a composite loss function that balances Q-learning with well-calibrated probability estimation. This enables uncertainty-aware action selection, allowing the model to avoid potentially harmful actions in unfamiliar states and handle distribution shift by being more conservative in out-of-distribution scenarios. Evaluation against baseline models, including physician policies, policy constraint methods, and behavior cloning, demonstrates that ConformalDQN consistently makes recommendations within clinically safe and relevant ranges, outperforming other methods by increasing the 90-day survival rate. Notably, our approach provides an interpretable measure of confidence in its decisions, crucial for clinical adoption and potential human-in-the-loop implementations.

Original languageEnglish (US)
Title of host publicationSpecial Track on AI Alignment
EditorsToby Walsh, Julie Shah, Zico Kolter
PublisherAssociation for the Advancement of Artificial Intelligence
Pages27960-27968
Number of pages9
Edition27
ISBN (Electronic)157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978
DOIs
StatePublished - Apr 11 2025
Event39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States
Duration: Feb 25 2025Mar 4 2025

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number27
Volume39
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
Country/TerritoryUnited States
CityPhiladelphia
Period2/25/253/4/25

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Distribution-Free Uncertainty Quantification in Mechanical Ventilation Treatment: A Conformal Deep Q-Learning Framework'. Together they form a unique fingerprint.

Cite this