TY - GEN
T1 - Distributional Convergence of the Sliced Wasserstein Process
AU - Xi, Jiaqi
AU - Niles-Weed, Jonathan
N1 - Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Motivated by the statistical and computational challenges of computing Wasserstein distances in high-dimensional contexts, machine learning researchers have defined modified Wasserstein distances based on computing distances between one-dimensional projections of the measures. Different choices of how to aggregate these projected distances (averaging, random sampling, maximizing) give rise to different distances, requiring different statistical analyses. We define the Sliced Wasserstein Process, a stochastic process defined by the empirical Wasserstein distance between projections of empirical probability measures to all one-dimensional subspaces, and prove a uniform distributional limit theorem for this process. As a result, we obtain a unified framework in which to prove sample complexity and distributional limit results for all Wasserstein distances based on one-dimensional projections. We illustrate these results on a number of examples where no distributional limits were previously known.
AB - Motivated by the statistical and computational challenges of computing Wasserstein distances in high-dimensional contexts, machine learning researchers have defined modified Wasserstein distances based on computing distances between one-dimensional projections of the measures. Different choices of how to aggregate these projected distances (averaging, random sampling, maximizing) give rise to different distances, requiring different statistical analyses. We define the Sliced Wasserstein Process, a stochastic process defined by the empirical Wasserstein distance between projections of empirical probability measures to all one-dimensional subspaces, and prove a uniform distributional limit theorem for this process. As a result, we obtain a unified framework in which to prove sample complexity and distributional limit results for all Wasserstein distances based on one-dimensional projections. We illustrate these results on a number of examples where no distributional limits were previously known.
UR - http://www.scopus.com/inward/record.url?scp=85150002542&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85150002542&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85150002542
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
A2 - Koyejo, S.
A2 - Mohamed, S.
A2 - Agarwal, A.
A2 - Belgrave, D.
A2 - Cho, K.
A2 - Oh, A.
PB - Neural information processing systems foundation
T2 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
Y2 - 28 November 2022 through 9 December 2022
ER -