TY - JOUR
T1 - DNA binding by single HMG box model proteins
AU - Xin, Hong
AU - Taudte, Susann
AU - Kallenbach, Neville R.
AU - Limbach, M. Paullin
AU - Zitomer, Richard S.
PY - 2000/10/15
Y1 - 2000/10/15
N2 - The HMG1/2 family is a large group of proteins that share a conserved sequence of ~80 amino acids rich in basic, aromatic and proline side chains, referred to as an HMG box. Previous studies show that HMG boxes can bind to DNA in a structure-specific manner. To define the basis for DNA recognition by HMG boxes, we characterize the interaction of two model HMG boxes, one a structure-specific box, rHMGb from the rat HMG1 protein, the other a sequence-specific box, Rox1 from yeast, with oligodeoxynucleotide substrates. Both proteins interact with single-stranded oligonucleotides in this study to form 1:1 complexes. The stoichiometry of binding of rHMGb to duplex or branched DNAs differs: for a 16mer duplex we find a weak 2:1 complex, while a 4:1 protein:DNA complex is detected with a four-way DNA junction of 16mers in the presence of Mg2+. In the case of the sequence-specific Rox1 protein we find tight 1:1 and 2:1 complexes with its cognate duplex sequence and again a 4:1 complex with four-way branched DNA. If the DNA branching is reduced to three arms, both proteins form 3:1 complexes. We believe that these multimeric complexes are relevant for HMG1/2 proteins in vivo, since Mg2+ is present in the nucleus and these proteins are expressed at a very high level.
AB - The HMG1/2 family is a large group of proteins that share a conserved sequence of ~80 amino acids rich in basic, aromatic and proline side chains, referred to as an HMG box. Previous studies show that HMG boxes can bind to DNA in a structure-specific manner. To define the basis for DNA recognition by HMG boxes, we characterize the interaction of two model HMG boxes, one a structure-specific box, rHMGb from the rat HMG1 protein, the other a sequence-specific box, Rox1 from yeast, with oligodeoxynucleotide substrates. Both proteins interact with single-stranded oligonucleotides in this study to form 1:1 complexes. The stoichiometry of binding of rHMGb to duplex or branched DNAs differs: for a 16mer duplex we find a weak 2:1 complex, while a 4:1 protein:DNA complex is detected with a four-way DNA junction of 16mers in the presence of Mg2+. In the case of the sequence-specific Rox1 protein we find tight 1:1 and 2:1 complexes with its cognate duplex sequence and again a 4:1 complex with four-way branched DNA. If the DNA branching is reduced to three arms, both proteins form 3:1 complexes. We believe that these multimeric complexes are relevant for HMG1/2 proteins in vivo, since Mg2+ is present in the nucleus and these proteins are expressed at a very high level.
UR - http://www.scopus.com/inward/record.url?scp=0034667897&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034667897&partnerID=8YFLogxK
U2 - 10.1093/nar/28.20.4044
DO - 10.1093/nar/28.20.4044
M3 - Article
C2 - 11024186
AN - SCOPUS:0034667897
SN - 0305-1048
VL - 28
SP - 4044
EP - 4050
JO - Nucleic acids research
JF - Nucleic acids research
IS - 20
ER -