DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle

Andrey Mikheikin, Anita Olsen, Kevin Leslie, Freddie Russell-Pavier, Andrew Yacoot, Loren Picco, Oliver Payton, Amir Toor, Alden Chesney, James K. Gimzewski, Bud Mishra, Jason Reed

Research output: Contribution to journalArticle


Progress in whole-genome sequencing using short-read (e.g., <150 bp), next-generation sequencing technologies has reinvigorated interest in high-resolution physical mapping to fill technical gaps that are not well addressed by sequencing. Here, we report two technical advances in DNA nanotechnology and single-molecule genomics: (1) we describe a labeling technique (CRISPR-Cas9 nanoparticles) for high-speed AFM-based physical mapping of DNA and (2) the first successful demonstration of using DVD optics to image DNA molecules with high-speed AFM. As a proof of principle, we used this new "nanomapping" method to detect and map precisely BCL2-IGH translocations present in lymph node biopsies of follicular lymphoma patents. This HS-AFM "nanomapping" technique can be complementary to both sequencing and other physical mapping approaches.

Original languageEnglish (US)
Article number1665
JournalNature communications
Issue number1
StatePublished - Dec 1 2017

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle'. Together they form a unique fingerprint.

  • Cite this

    Mikheikin, A., Olsen, A., Leslie, K., Russell-Pavier, F., Yacoot, A., Picco, L., Payton, O., Toor, A., Chesney, A., Gimzewski, J. K., Mishra, B., & Reed, J. (2017). DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle. Nature communications, 8(1), [1665]. https://doi.org/10.1038/s41467-017-01891-9