DNA-templated self-assembly of metallic nanocomponent arrays on a surface

John D. Le, Yariv Pinto, Nadrian C. Seeman, Karin Musier-Forsyth, T. Andrew Taton, Richard A. Kiehl

Research output: Contribution to journalArticlepeer-review


A method for laying out arrays of components in programmable 2D arrangements with nanometer-scale precision is needed for the manufacture of high density nanoelectronic circuitry. We report programmed self-assembly of gold prototype nanoelectronic components into closely packed rows with precisely defined inter-row spacings by in situ hybridization of DNA-functionalized components to a preassembled 2D DNA scaffolding on a surface. This approach is broadly applicable to the manufacture of nanoscale integrated circuits for logic, memory, sensing, and other applications.

Original languageEnglish (US)
Pages (from-to)2343-2347
Number of pages5
JournalNano Letters
Issue number12
StatePublished - Dec 2004

ASJC Scopus subject areas

  • Bioengineering
  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanical Engineering


Dive into the research topics of 'DNA-templated self-assembly of metallic nanocomponent arrays on a surface'. Together they form a unique fingerprint.

Cite this