DNN-Life: An Energy-Efficient Aging Mitigation Framework for Improving the Lifetime of On-Chip Weight Memories in Deep Neural Network Hardware Architectures

Muhammad Abdullah Hanif, Muhammad Shafique

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Negative Biased Temperature Instability (NBTI)-induced aging is one of the critical reliability threats in nano-scale devices. This paper makes the first attempt to study the NBTI aging in the on-chip weight memories of deep neural network (DNN) hardware accelerators, subjected to complex DNN workloads. We propose DNN-Life, a specialized aging analysis and mitigation framework for DNNs, which jointly exploits hardware- and software-level knowledge to improve the lifetime of a DNN weight memory with reduced energy overhead. At the software-level, we analyze the effects of different DNN quantization methods on the distribution of the bits of weight values. Based on the insights gained from this analysis, we propose a micro-architecture that employs low-cost memory-write (and read) transducers to achieve an optimal duty-cycle at run time in the weight memory cells, thereby balancing their aging. As a result, our DNN-Life framework enables efficient aging mitigation of weight memory of the given DNN hardware at minimal energy overhead during the inference process.

Original languageEnglish (US)
Title of host publicationProceedings of the 2021 Design, Automation and Test in Europe, DATE 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages729-734
Number of pages6
ISBN (Electronic)9783981926354
DOIs
StatePublished - Feb 1 2021
Event2021 Design, Automation and Test in Europe Conference and Exhibition, DATE 2021 - Virtual, Online
Duration: Feb 1 2021Feb 5 2021

Publication series

NameProceedings -Design, Automation and Test in Europe, DATE
Volume2021-February
ISSN (Print)1530-1591

Conference

Conference2021 Design, Automation and Test in Europe Conference and Exhibition, DATE 2021
CityVirtual, Online
Period2/1/212/5/21

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'DNN-Life: An Energy-Efficient Aging Mitigation Framework for Improving the Lifetime of On-Chip Weight Memories in Deep Neural Network Hardware Architectures'. Together they form a unique fingerprint.

Cite this