Don't blame Dataset Shift! Shortcut Learning due to Gradients and Cross Entropy

Aahlad Puli, Lily Zhang, Yoav Wald, Rajesh Ranganath

Research output: Contribution to journalConference articlepeer-review

Abstract

Common explanations for shortcut learning assume that the shortcut improves prediction under the training distribution but not in the test distribution. Thus, models trained via the typical gradient-based optimization of cross-entropy, which we call default-ERM, utilize the shortcut. However, even when the stable feature determines the label in the training distribution and the shortcut does not provide any additional information, like in perception tasks, default-ERM still exhibits shortcut learning. Why are such solutions preferred when the loss for default-ERM can be driven to zero using the stable feature alone? By studying a linear perception task, we show that default-ERM's preference for maximizing the margin leads to models that depend more on the shortcut than the stable feature, even without overparameterization. This insight suggests that default-ERM's implicit inductive bias towards max-margin is unsuitable for perception tasks. Instead, we develop an inductive bias toward uniform margins and show that this bias guarantees dependence only on the perfect stable feature in the linear perception task. We develop loss functions that encourage uniform-margin solutions, called margin control (MARG-CTRL). MARG-CTRL mitigates shortcut learning on a variety of vision and language tasks, showing that better inductive biases can remove the need for expensive two-stage shortcut-mitigating methods in perception tasks.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume36
StatePublished - 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: Dec 10 2023Dec 16 2023

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Don't blame Dataset Shift! Shortcut Learning due to Gradients and Cross Entropy'. Together they form a unique fingerprint.

Cite this