TY - JOUR
T1 - Dosing interval strategies for two-dose COVID-19 vaccination in 13 middle-income countries of Europe
T2 - Health impact modelling and benefit-risk analysis
AU - CMMID COVID-19 Working Group
AU - Liu, Yang
AU - Pearson, Carl A.B.
AU - Sandmann, Frank G.
AU - Barnard, Rosanna C.
AU - Kim, Jong Hoon
AU - Flasche, Stefan
AU - Jit, Mark
AU - Abbas, Kaja
N1 - Publisher Copyright:
© 2022
PY - 2022/6
Y1 - 2022/6
N2 - Background: In settings where the COVID-19 vaccine supply is constrained, extending the intervals between the first and second doses of the COVID-19 vaccine may allow more people receive their first doses earlier. Our aim is to estimate the health impact of COVID-19 vaccination alongside benefit-risk assessment of different dosing intervals in 13 middle-income countries (MICs) of Europe. Methods: We fitted a dynamic transmission model to country-level daily reported COVID-19 mortality in 13 MICs in Europe (Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Georgia, Republic of Moldova, Russian Federation, Serbia, North Macedonia, Turkey, and Ukraine). A vaccine product with characteristics similar to those of the Oxford/AstraZeneca COVID-19 (AZD1222) vaccine was used in the base case scenario and was complemented by sensitivity analyses around efficacies similar to other COVID-19 vaccines. Both fixed dosing intervals at 4, 8, 12, 16, and 20 weeks and dose-specific intervals that prioritise specific doses for certain age groups were tested. Optimal intervals minimise COVID-19 mortality between March 2021 and December 2022. We incorporated the emergence of variants of concern (VOCs) into the model and conducted a benefit-risk assessment to quantify the tradeoff between health benefits versus adverse events following immunisation. Findings: In all countries modelled, optimal strategies are those that prioritise the first doses among older adults (60+ years) or adults (20+ years), which lead to dosing intervals longer than six months. In comparison, a four-week fixed dosing interval may incur 10.1% [range: 4.3% - 19.0%; n = 13 (countries)] more deaths. The rapid waning of the immunity induced by the first dose (i.e. with means ranging 60-120 days as opposed to 360 days in the base case) resulted in shorter optimal dosing intervals of 8-20 weeks. Benefit-risk ratios were the highest for fixed dosing intervals of 8-12 weeks. Interpretation: We infer that longer dosing intervals of over six months could reduce COVID-19 mortality in MICs of Europe. Certain parameters, such as rapid waning of first-dose induced immunity and increased immune escape through the emergence of VOCs, could significantly shorten the optimal dosing intervals. Funding: World Health Organization.
AB - Background: In settings where the COVID-19 vaccine supply is constrained, extending the intervals between the first and second doses of the COVID-19 vaccine may allow more people receive their first doses earlier. Our aim is to estimate the health impact of COVID-19 vaccination alongside benefit-risk assessment of different dosing intervals in 13 middle-income countries (MICs) of Europe. Methods: We fitted a dynamic transmission model to country-level daily reported COVID-19 mortality in 13 MICs in Europe (Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Georgia, Republic of Moldova, Russian Federation, Serbia, North Macedonia, Turkey, and Ukraine). A vaccine product with characteristics similar to those of the Oxford/AstraZeneca COVID-19 (AZD1222) vaccine was used in the base case scenario and was complemented by sensitivity analyses around efficacies similar to other COVID-19 vaccines. Both fixed dosing intervals at 4, 8, 12, 16, and 20 weeks and dose-specific intervals that prioritise specific doses for certain age groups were tested. Optimal intervals minimise COVID-19 mortality between March 2021 and December 2022. We incorporated the emergence of variants of concern (VOCs) into the model and conducted a benefit-risk assessment to quantify the tradeoff between health benefits versus adverse events following immunisation. Findings: In all countries modelled, optimal strategies are those that prioritise the first doses among older adults (60+ years) or adults (20+ years), which lead to dosing intervals longer than six months. In comparison, a four-week fixed dosing interval may incur 10.1% [range: 4.3% - 19.0%; n = 13 (countries)] more deaths. The rapid waning of the immunity induced by the first dose (i.e. with means ranging 60-120 days as opposed to 360 days in the base case) resulted in shorter optimal dosing intervals of 8-20 weeks. Benefit-risk ratios were the highest for fixed dosing intervals of 8-12 weeks. Interpretation: We infer that longer dosing intervals of over six months could reduce COVID-19 mortality in MICs of Europe. Certain parameters, such as rapid waning of first-dose induced immunity and increased immune escape through the emergence of VOCs, could significantly shorten the optimal dosing intervals. Funding: World Health Organization.
KW - COVID-19
KW - Mathematical modelling
KW - Public health intervention
KW - Quantitative methods
KW - SARS-CoV-2
KW - Vaccine policy
UR - http://www.scopus.com/inward/record.url?scp=85133172092&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85133172092&partnerID=8YFLogxK
U2 - 10.1016/j.lanepe.2022.100381
DO - 10.1016/j.lanepe.2022.100381
M3 - Article
AN - SCOPUS:85133172092
SN - 2666-7762
VL - 17
JO - The Lancet Regional Health - Europe
JF - The Lancet Regional Health - Europe
M1 - 100381
ER -