Abstract
The classical theory of high-speed flow predicts that a moving rigid object experiences a drag proportional to the square of its speed. However, this reasoning does not apply if the object in the flow is flexible, because its shape then becomes a function of its speed - for example, the rolling up of broad tree leaves in a stiff wind. The reconfiguration of bodies by fluid forces is common in nature, and can result in a substantial drag reduction that is beneficial for. many organisms. Experimental studies of such flow-structure interactions generally lack a theoretical interpretation that unifies the body and flow mechanics. Here we use a flexible fibre immersed in a flowing soap film to measure the drag reduction that arises from bending of the fibre by the flow. Using a model that couples hydrodynamics to bending, we predict a reduced drag growth compared to the classical theory. The fibre undergoes a bending transition, producing shapes that are self-similar; for such configurations, the drag scales with the length of self-similarity, rather than the fibre profile width. These predictions are supported by our experimental data.
Original language | English (US) |
---|---|
Pages (from-to) | 479-481 |
Number of pages | 3 |
Journal | Nature |
Volume | 420 |
Issue number | 6915 |
DOIs | |
State | Published - Dec 5 2002 |
ASJC Scopus subject areas
- General