Abstract
High-density microelectrode arrays have opened new possibilities for systems neuroscience, but brain motion relative to the array poses challenges for downstream analyses. We introduce DREDge (Decentralized Registration of Electrophysiology Data), a robust algorithm for the registration of noisy, nonstationary extracellular electrophysiology recordings. In addition to estimating motion from action potential data, DREDge enables automated, high-temporal-resolution motion tracking in local field potential data. In human intraoperative recordings, DREDge’s local field potential-based tracking reliably recovered evoked potentials and single-unit spike sorting. In recordings of deep probe insertions in nonhuman primates, DREDge tracked motion across centimeters of tissue and several brain regions while mapping single-unit electrophysiological features. DREDge reliably improved motion correction in acute mouse recordings, especially in those made with a recent ultrahigh-density probe. Applying DREDge to recordings from chronic implantations in mice yielded stable motion tracking despite changes in neural activity between experimental sessions. These advances enable automated, scalable registration of electrophysiological data across species, probes and drift types, providing a foundation for downstream analyses of these rich datasets.
Original language | English (US) |
---|---|
Article number | 2344 |
Pages (from-to) | 788-800 |
Number of pages | 13 |
Journal | Nature methods |
Volume | 22 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2025 |
ASJC Scopus subject areas
- Biotechnology
- Biochemistry
- Molecular Biology
- Cell Biology