DRMap: A generic DRAM data mapping policy for energy-efficient processing of convolutional neural networks

Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, Muhammad Shafique

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Many convolutional neural network (CNN) accelerators face performance- and energy-efficiency challenges which are crucial for embedded implementations, due to high DRAM access latency and energy. Recently, some DRAM architectures have been proposed to exploit subarray-level parallelism for decreasing the access latency. Towards this, we present a design space exploration methodology to study the latency and energy of different mapping policies on different DRAM architectures, and identify the pareto-optimal design choices. The results show that the energy-efficient DRAM accesses can be achieved by a mapping policy that orderly prioritizes to maximize the row buffer hits, bank- and subarray-level parallelism.

Original languageEnglish (US)
Title of host publication2020 57th ACM/IEEE Design Automation Conference, DAC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781450367257
DOIs
StatePublished - Jul 2020
Event57th ACM/IEEE Design Automation Conference, DAC 2020 - Virtual, San Francisco, United States
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings - Design Automation Conference
Volume2020-July
ISSN (Print)0738-100X

Conference

Conference57th ACM/IEEE Design Automation Conference, DAC 2020
Country/TerritoryUnited States
CityVirtual, San Francisco
Period7/20/207/24/20

Keywords

  • CNN accelerators
  • CNNs
  • Convolutional neural networks
  • DRAM architectures
  • DRAM mapping
  • Subarray-level parallelism

ASJC Scopus subject areas

  • Computer Science Applications
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'DRMap: A generic DRAM data mapping policy for energy-efficient processing of convolutional neural networks'. Together they form a unique fingerprint.

Cite this