TY - JOUR
T1 - Dumpster diving in the emergency department
T2 - Quantity and characteristics of waste at a level I trauma center
AU - Hsu, Sarah
AU - Thiel, Cassandra L.
AU - Mello, Michael J.
AU - Slutzman, Jonathan E.
N1 - Funding Information:
We thank all EVS staff involved in executing the logistics of this study, along with Michael Dykstra, Hargun Khanna, and Simone Sasse for assisting with the waste audit.
Publisher Copyright:
© 2020 Hsu et al.
PY - 2020
Y1 - 2020
N2 - Introduction: Healthcare contributes 10% of greenhouse gases in the United States and generates two milion tons of waste each year. Reducing healthcare waste can reduce the environmental impact of healthcare and lower hospitals' waste disposal costs. However, no literature to date has examined US emergency department (ED) waste management. The purpose of this study was to quantify and describe the amount of waste generated by an ED, identify deviations from waste policy, and explore areas for waste reduction. Methods: We conducted a 24-hour (weekday) ED waste audit in an urban, tertiary-care academic medical center. All waste generated in the ED during the study period was collected, manually sorted into separate categories based on its predominant material, and weighed. We tracked deviations from hospital waste policy using the hospital's Infection Control Manual, state regulations, and Health Insurance Portability and Accountability Act standards. Lastly, we calculated direct pollutant emissions from ED waste disposal activities using the M+WasteCare Calculator. Results: The ED generated 671.8 kilograms (kg) total waste during a 24-hour collection period. On a per-patient basis, the ED generated 1.99 kg of total waste per encounter. The majority was plastic (64.6%), with paper-derived products (18.4%) the next largest category. Only 14.9% of waste disposed of in red bags met the criteria for regulated medical waste. We identified several deviations from waste policy, including loose sharps not placed in sharps containers, as well as re-processable items and protected health information thrown in medical and solid waste. We also identified over 200 unused items. Pollutant emissions resulting per day from ED waste disposal include 3110 kg carbon dioxide equivalent and 576 grams of other criteria pollutants, heavy metals, and toxins. Conclusion: The ED generates significant amounts of waste. Current ED waste disposal practices reveal several opportunities to reduce total waste generated, increase adherence to waste policy, and reduce environmental impact. While our results will likely be similar to other urban tertiary EDs that serve as Level I trauma centers, future studies are needed to compare results across EDs with different patient volumes or waste generation rates.
AB - Introduction: Healthcare contributes 10% of greenhouse gases in the United States and generates two milion tons of waste each year. Reducing healthcare waste can reduce the environmental impact of healthcare and lower hospitals' waste disposal costs. However, no literature to date has examined US emergency department (ED) waste management. The purpose of this study was to quantify and describe the amount of waste generated by an ED, identify deviations from waste policy, and explore areas for waste reduction. Methods: We conducted a 24-hour (weekday) ED waste audit in an urban, tertiary-care academic medical center. All waste generated in the ED during the study period was collected, manually sorted into separate categories based on its predominant material, and weighed. We tracked deviations from hospital waste policy using the hospital's Infection Control Manual, state regulations, and Health Insurance Portability and Accountability Act standards. Lastly, we calculated direct pollutant emissions from ED waste disposal activities using the M+WasteCare Calculator. Results: The ED generated 671.8 kilograms (kg) total waste during a 24-hour collection period. On a per-patient basis, the ED generated 1.99 kg of total waste per encounter. The majority was plastic (64.6%), with paper-derived products (18.4%) the next largest category. Only 14.9% of waste disposed of in red bags met the criteria for regulated medical waste. We identified several deviations from waste policy, including loose sharps not placed in sharps containers, as well as re-processable items and protected health information thrown in medical and solid waste. We also identified over 200 unused items. Pollutant emissions resulting per day from ED waste disposal include 3110 kg carbon dioxide equivalent and 576 grams of other criteria pollutants, heavy metals, and toxins. Conclusion: The ED generates significant amounts of waste. Current ED waste disposal practices reveal several opportunities to reduce total waste generated, increase adherence to waste policy, and reduce environmental impact. While our results will likely be similar to other urban tertiary EDs that serve as Level I trauma centers, future studies are needed to compare results across EDs with different patient volumes or waste generation rates.
UR - http://www.scopus.com/inward/record.url?scp=85091209254&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091209254&partnerID=8YFLogxK
U2 - 10.5811/westjem.2020.6.47900
DO - 10.5811/westjem.2020.6.47900
M3 - Article
C2 - 32970577
AN - SCOPUS:85091209254
SN - 1936-900X
VL - 21
SP - 1211
EP - 1217
JO - Western Journal of Emergency Medicine
JF - Western Journal of Emergency Medicine
IS - 5
ER -