Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires

Jason B. Baxter, Eray S. Aydil

Research output: Contribution to journalArticlepeer-review

Abstract

ZnO nanowires and structures that combine nanowires and nanoparticles were used as the wide band gap semiconducting photoelectrode in dye-sensitized solar cells (DSSCs). The nanowires provide a direct path from the point of photogeneration to the conducting substrate and offer alternative semiconductor network morphologies to those possible with sintered nanoparticles. Growing nanowires with dendrite-like branched structure greatly enhances their surface area, leading to improved light harvesting and overall efficiencies. Hybrid cells based on a combination of nanowires and nanoparticles can be tailored to take advantage of both the high surface area provided by the nanoparticles and the improved electron transport along a nanowire network. Solar cells made from branched nanowires showed photocurrents of 1.6 mA/cm2, internal quantum efficiencies of 70%, and overall efficiencies of 0.5%. Solar cells made from appropriate hybrid morphologies show photocurrents of 3 mA/cm2 and overall efficiencies of 1.1%, while both the nanowire and hybrid cells show larger open circuit voltages than nanoparticle cells.

Original languageEnglish (US)
Pages (from-to)607-622
Number of pages16
JournalSolar Energy Materials and Solar Cells
Volume90
Issue number5
DOIs
StatePublished - Mar 23 2006

Keywords

  • Dye-sensitized solar cells
  • Nanowire
  • Zno

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires'. Together they form a unique fingerprint.

Cite this