TY - GEN
T1 - Dynamic flow scheduling for Power-efficient Data Center Networks
AU - Guo, Zehua
AU - Hui, Shufeng
AU - Xu, Yang
AU - Chao, H. Jonathan
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/10/13
Y1 - 2016/10/13
N2 - Power-efficient Data Center Networks (DCNs) have been proposed to save power of DCNs using OpenFlow. In these DCNs, the OpenFlow controller adaptively turns on and off links and OpenFlow switches to form a minimum-power subnet that satisfies traffic demand. As the subnet changes, flows are scheduled dynamically to routes composed of active switches and links. However, existing flow scheduling schemes could cause undesired results: (1) power inefficiency: due to unbalanced traffic allocation on active routes, extra switches and links may be activated to cater to bursty traffic surges on congested routes, and (2) Quality of Service (QoS) fluctuation: because of the limited flow entry processing ability, switches cannot timely install/delete/update flow entries to properly schedule flows. In this paper, we propose AggreFlow, a dynamic flow scheduling scheme that achieves power efficiency in DCNs and improved QoS using two techniques: Flow-set Routing and Lazy Rerouting. Flow-set Routing achieves load balancing and reduces the number of entry installment on switches by routing flows in a coarse-grained flow-set fashion. Lazy Rerouting maintains load balancing and spreads rerouting operations over a relatively long period of time, reducing the burstiness of entry installment/deletion/update on switches. We built a NS3 based fat-tree network simulation platform to evaluate AggreFlow's performance. The simulation results show AggreFlow reduces power consumption by about 18%, achieves load balancing and improved QoS (i.e., low packet loss rate and reducing the number of processing entries for flow scheduling by 98%), compared with baseline schemes.
AB - Power-efficient Data Center Networks (DCNs) have been proposed to save power of DCNs using OpenFlow. In these DCNs, the OpenFlow controller adaptively turns on and off links and OpenFlow switches to form a minimum-power subnet that satisfies traffic demand. As the subnet changes, flows are scheduled dynamically to routes composed of active switches and links. However, existing flow scheduling schemes could cause undesired results: (1) power inefficiency: due to unbalanced traffic allocation on active routes, extra switches and links may be activated to cater to bursty traffic surges on congested routes, and (2) Quality of Service (QoS) fluctuation: because of the limited flow entry processing ability, switches cannot timely install/delete/update flow entries to properly schedule flows. In this paper, we propose AggreFlow, a dynamic flow scheduling scheme that achieves power efficiency in DCNs and improved QoS using two techniques: Flow-set Routing and Lazy Rerouting. Flow-set Routing achieves load balancing and reduces the number of entry installment on switches by routing flows in a coarse-grained flow-set fashion. Lazy Rerouting maintains load balancing and spreads rerouting operations over a relatively long period of time, reducing the burstiness of entry installment/deletion/update on switches. We built a NS3 based fat-tree network simulation platform to evaluate AggreFlow's performance. The simulation results show AggreFlow reduces power consumption by about 18%, achieves load balancing and improved QoS (i.e., low packet loss rate and reducing the number of processing entries for flow scheduling by 98%), compared with baseline schemes.
KW - Flow scheduling
KW - OpenFlow
KW - Power saving
KW - Power-efficient data center networks
UR - http://www.scopus.com/inward/record.url?scp=85009816958&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85009816958&partnerID=8YFLogxK
U2 - 10.1109/IWQoS.2016.7590399
DO - 10.1109/IWQoS.2016.7590399
M3 - Conference contribution
AN - SCOPUS:85009816958
T3 - 2016 IEEE/ACM 24th International Symposium on Quality of Service, IWQoS 2016
BT - 2016 IEEE/ACM 24th International Symposium on Quality of Service, IWQoS 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 24th IEEE/ACM International Symposium on Quality of Service, IWQoS 2016
Y2 - 20 June 2016 through 21 June 2016
ER -