TY - JOUR
T1 - Dynamic Origin–Destination Matrix Prediction with Line Graph Neural Networks and Kalman Filter
AU - Xiong, Xi
AU - Ozbay, Kaan
AU - Jin, Li
AU - Feng, Chen
N1 - Publisher Copyright:
© National Academy of Sciences: Transportation Research Board 2020.
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Modern intelligent transportation systems provide data that allow real-time dynamic demand prediction, which is essential for planning and operations. The main challenge of prediction of dynamic origin–destination (O-D) demand matrices is that demand cannot be directly measured by traffic sensors; instead, it has to be inferred from aggregate traffic flow data on traffic links. Specifically, spatial correlation, congestion and time dependent factors need to be considered in general transportation networks. This paper proposes a novel O-D prediction framework combining heterogeneous prediction in graph neural networks and Kalman filter to recognize spatial and temporal patterns simultaneously. The underlying road network topology is converted into a corresponding line graph in the newly designed fusion line graph convolutional networks (FL-GCNs), which provide a general framework of predicting spatial-temporal O-D flows from link information. Data from the New Jersey Turnpike network are used to evaluate the proposed model. The results show that the proposed approach yields the best performance under various prediction scenarios. In addition, the advantage of combining deep neural networks and Kalman filter is demonstrated.
AB - Modern intelligent transportation systems provide data that allow real-time dynamic demand prediction, which is essential for planning and operations. The main challenge of prediction of dynamic origin–destination (O-D) demand matrices is that demand cannot be directly measured by traffic sensors; instead, it has to be inferred from aggregate traffic flow data on traffic links. Specifically, spatial correlation, congestion and time dependent factors need to be considered in general transportation networks. This paper proposes a novel O-D prediction framework combining heterogeneous prediction in graph neural networks and Kalman filter to recognize spatial and temporal patterns simultaneously. The underlying road network topology is converted into a corresponding line graph in the newly designed fusion line graph convolutional networks (FL-GCNs), which provide a general framework of predicting spatial-temporal O-D flows from link information. Data from the New Jersey Turnpike network are used to evaluate the proposed model. The results show that the proposed approach yields the best performance under various prediction scenarios. In addition, the advantage of combining deep neural networks and Kalman filter is demonstrated.
UR - http://www.scopus.com/inward/record.url?scp=85094905043&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85094905043&partnerID=8YFLogxK
U2 - 10.1177/0361198120919399
DO - 10.1177/0361198120919399
M3 - Article
AN - SCOPUS:85094905043
SN - 0361-1981
VL - 2674
SP - 491
EP - 503
JO - Transportation Research Record
JF - Transportation Research Record
IS - 8
ER -