Abstract
This article describes the morphological and chemical characterization of stimuli-responsive functionalized silicon surfaces provided in parallel by atomic force spectroscopy (AFM) and Fourier transform infrared spectroscopy (FT-IR) enhanced by the single-beam sample reference attenuated total reflection method (SBSR-ATR). The stimuli-responsive behavior of the surfaces was obtained by grafting-to in melt carboxyl-terminated poly-N-isopropylacryl amides (PNIPAAM) with different degree of polymerization (DP) on epoxide-functionalized silicon substrates. The unprecedented real time and in situ physicochemical insight into the temperature-triggered response of the densely packed superficial brushes allowed for the selection of a PNIPAAM with a specific DP as a suitable polymer for the fabrication of silicon membranes exhibiting switchable nanopores. The fabrication process combines the manufacture of nanoporous silicon surfaces and their subsequent chemical functionalization by the grafting-to in melt of the selected polymer. Then, relevant information was obtained in what concerns the chemical modifications behind the topographical changes that drive the functioning of PNIPAAM-based hybrid nanovalves as well as the timescale on which the opening and closing of the nanopores occur.
Original language | English (US) |
---|---|
Pages (from-to) | 15356-15365 |
Number of pages | 10 |
Journal | Langmuir |
Volume | 26 |
Issue number | 19 |
DOIs | |
State | Published - Oct 5 2010 |
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry