TY - JOUR
T1 - Dynamic simulations of 13 TATA variants refine kinetic hypotheses of sequence/activity relationships
AU - Qian, Xiaoliang
AU - Strahs, Daniel
AU - Schlick, Tamar
PY - 2001
Y1 - 2001
N2 - The fundamental relationship between DNA sequence/deformability and biological function has attracted numerous experimental and theoretical studies. A classic prototype system used for such studies in eukaryotes is the complex between the TATA element transcriptional regulator and the TATA-box binding protein (TBP). The recent crystallographic study by Burley and co-workers demonstrated the remarkable structural similarity contrasted to different transcriptional activity of 11 TBP/DNA complexes in which the DNAs differed by single base-pairs. By simulating these TATA variants and two other single base-pair variants that were not crystallizable, we uncover sequence-dependent structural, energetic, and flexibility properties that tailor TATA elements to TBP interactions, complementing many previous studies by refining kinetic hypotheses on sequence/activity correlations. The factors that combine to produce favorable elements for TBP activity include overall flexibility; minor groove widening, as well as roll, rise, and shift increases at the ends of the TATA element; untwisting within the TATA element accompanied by large roll at the TATA element ends; and relatively low maximal water densities around the DNA. These features accompany the severe deformation induced by the minor-groove binding protein, which kinks the TATA element at the ends and displaces local water molecules to form stabilizing hydrophobic contacts. Interestingly, the preferred bending direction itself is not a significant predictor of activity disposition, although certain variants (such as wild-type AdMLP, 5′-TATA4G-3′, and inactive A29, 5′-TA6G-3′) exhibit large preferred bends in directions consistent with their activity or inactivity (major groove and minor groove bends, respectively). These structural, flexibility, and hydration preferences, identified here and connected to a new crystallographic study of a larger group of DNA variants than reported to date, highlight the profound influence of single base-pair DNA variations on DNA motion. Our refined kinetic hypothesis suggests the functional implications of these motions in a kinetic model of TATA/TBP recognition, inviting further theoretical and experimental research.
AB - The fundamental relationship between DNA sequence/deformability and biological function has attracted numerous experimental and theoretical studies. A classic prototype system used for such studies in eukaryotes is the complex between the TATA element transcriptional regulator and the TATA-box binding protein (TBP). The recent crystallographic study by Burley and co-workers demonstrated the remarkable structural similarity contrasted to different transcriptional activity of 11 TBP/DNA complexes in which the DNAs differed by single base-pairs. By simulating these TATA variants and two other single base-pair variants that were not crystallizable, we uncover sequence-dependent structural, energetic, and flexibility properties that tailor TATA elements to TBP interactions, complementing many previous studies by refining kinetic hypotheses on sequence/activity correlations. The factors that combine to produce favorable elements for TBP activity include overall flexibility; minor groove widening, as well as roll, rise, and shift increases at the ends of the TATA element; untwisting within the TATA element accompanied by large roll at the TATA element ends; and relatively low maximal water densities around the DNA. These features accompany the severe deformation induced by the minor-groove binding protein, which kinks the TATA element at the ends and displaces local water molecules to form stabilizing hydrophobic contacts. Interestingly, the preferred bending direction itself is not a significant predictor of activity disposition, although certain variants (such as wild-type AdMLP, 5′-TATA4G-3′, and inactive A29, 5′-TA6G-3′) exhibit large preferred bends in directions consistent with their activity or inactivity (major groove and minor groove bends, respectively). These structural, flexibility, and hydration preferences, identified here and connected to a new crystallographic study of a larger group of DNA variants than reported to date, highlight the profound influence of single base-pair DNA variations on DNA motion. Our refined kinetic hypothesis suggests the functional implications of these motions in a kinetic model of TATA/TBP recognition, inviting further theoretical and experimental research.
KW - Flexibility
KW - Sequence-dependent bending
KW - TATA variants
KW - TBP
KW - Transcriptional activity
UR - http://www.scopus.com/inward/record.url?scp=0034972522&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034972522&partnerID=8YFLogxK
U2 - 10.1006/jmbi.2001.4617
DO - 10.1006/jmbi.2001.4617
M3 - Article
C2 - 11350169
AN - SCOPUS:0034972522
SN - 0022-2836
VL - 308
SP - 681
EP - 703
JO - Journal of Molecular Biology
JF - Journal of Molecular Biology
IS - 4
ER -