TY - GEN
T1 - Dynamic time warping-based proximity problems
AU - Aronov, Boris
AU - Katz, Matthew J.
AU - Sulami, Elad
N1 - Funding Information:
Funding Boris Aronov: Partially supported by NSF grant CCF-15-40656 and by grant 2014/170 from the US-Israel Binational Science Foundation. Matthew J. Katz: Partially supported by grant 1884/16 from the Israel Science Foundation and by grant 2014/170 from the US-Israel Binational Science Foundation.
Funding Information:
Boris Aronov: Partially supported by NSF grant CCF-15-40656 and by grant 2014/170 from the US-Israel Binational Science Foundation.
Publisher Copyright:
© Nathalie Bertrand; licensed under Creative Commons License CC-BY 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
PY - 2020/8/1
Y1 - 2020/8/1
N2 - Dynamic Time Warping (DTW) is a well-known similarity measure for curves, i.e., sequences of points, and especially for time series. We study several proximity problems for curves, where dynamic time warping is the underlying similarity measure. More precisely, we focus on the variants of these problems, in which, whenever we refer to the dynamic time warping distance between two curves, one of them is a line segment (i.e., a sequence of length two). These variants already reveal some of the difficulties that occur when dealing with the more general ones. Specifically, we study the following three problems: (i) distance oracle: given a curve C in Rd, preprocess it to accommodate distance computations between query segments and C, (ii) segment center: given a set C of curves in Rd, find a segment s that minimizes the maximum distance between s and a curve in C, and (iii) segment nearest neighbor: given C, construct a data structure for segment nearest neighbor queries, i.e., return the curve in C which is closest to a query segment s. We present solutions to these problems in any constant dimension d ≥ 1, using L∞ for inter-point distances. We also consider the approximation version of the first problem, using L1 for inter-point distances. That is, given a length-m curve C in Rd, we construct a data structure of size O(m log m) that allows one to compute a 2-approximation of the distance between a query segment s and C in O(log3 m) time. Finally, we describe an interesting experimental study that we performed, which is related to the first problem above.
AB - Dynamic Time Warping (DTW) is a well-known similarity measure for curves, i.e., sequences of points, and especially for time series. We study several proximity problems for curves, where dynamic time warping is the underlying similarity measure. More precisely, we focus on the variants of these problems, in which, whenever we refer to the dynamic time warping distance between two curves, one of them is a line segment (i.e., a sequence of length two). These variants already reveal some of the difficulties that occur when dealing with the more general ones. Specifically, we study the following three problems: (i) distance oracle: given a curve C in Rd, preprocess it to accommodate distance computations between query segments and C, (ii) segment center: given a set C of curves in Rd, find a segment s that minimizes the maximum distance between s and a curve in C, and (iii) segment nearest neighbor: given C, construct a data structure for segment nearest neighbor queries, i.e., return the curve in C which is closest to a query segment s. We present solutions to these problems in any constant dimension d ≥ 1, using L∞ for inter-point distances. We also consider the approximation version of the first problem, using L1 for inter-point distances. That is, given a length-m curve C in Rd, we construct a data structure of size O(m log m) that allows one to compute a 2-approximation of the distance between a query segment s and C in O(log3 m) time. Finally, we describe an interesting experimental study that we performed, which is related to the first problem above.
KW - Clustering
KW - Distance oracle
KW - Dynamic time warping
KW - Nearest-neighbor search
UR - http://www.scopus.com/inward/record.url?scp=85090509934&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090509934&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.MFCS.2020.9
DO - 10.4230/LIPIcs.MFCS.2020.9
M3 - Conference contribution
AN - SCOPUS:85090509934
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020
A2 - Esparza, Javier
A2 - Kral�, Daniel
A2 - Kral�, Daniel
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020
Y2 - 25 August 2020 through 26 August 2020
ER -