Early Identification of Patients With Acute Decompensated Heart Failure

Saul Blecker, David Sontag, Leora I. Horwitz, Gilad Kuperman, Hannah Park, Alex Reyentovich, Stuart D. Katz

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Interventions to reduce readmissions after acute heart failure hospitalization require early identification of patients. The purpose of this study was to develop and test accuracies of various approaches to identify patients with acute decompensated heart failure (ADHF) with the use of data derived from the electronic health record. Methods and Results: We included 37,229 hospitalizations of adult patients at a single hospital during 2013–2015. We developed 4 algorithms to identify hospitalization with a principal discharge diagnosis of ADHF: 1) presence of 1 of 3 clinical characteristics, 2) logistic regression of 31 structured data elements, 3) machine learning with unstructured data, and 4) machine learning with the use of both structured and unstructured data. In data validation, algorithm 1 had a sensitivity of 0.98 and positive predictive value (PPV) of 0.14 for ADHF. Algorithm 2 had an area under the receiver operating characteristic curve (AUC) of 0.96, and both machine learning algorithms had AUCs of 0.99. Based on a brief survey of 3 providers who perform chart review for ADHF, we estimated that providers spent 8.6 minutes per chart review; using this this parameter, we estimated that providers would spend 61.4, 57.3, 28.7, and 25.3 minutes on secondary chart review for each case of ADHF if initial screening were done with algorithms 1, 2, 3, and 4, respectively. Conclusions: Machine learning algorithms with unstructured notes had the best performance for identification of ADHF and can improve provider efficiency for delivery of quality improvement interventions.

Original languageEnglish (US)
Pages (from-to)357-362
Number of pages6
JournalJournal of Cardiac Failure
Volume24
Issue number6
DOIs
StatePublished - Jun 2018

Keywords

  • Phenotype
  • electronic health record
  • heart failure
  • hospitalization

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'Early Identification of Patients With Acute Decompensated Heart Failure'. Together they form a unique fingerprint.

Cite this