EEG Channel Interpolation Using Deep Encoder-decoder Networks

Sari Saba-Sadiya, Tuka Alhanai, Taosheng Liu, Mohammad M. Ghassemi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Electrode 'pop' artifacts originate from the spontaneous loss of connectivity between a surface and an electrode. Electroencephalography (EEG) uses a dense array of electrodes, hence popped segments are among the most pervasive type of artifact seen during the collection of EEG data. In many cases, the continuity of EEG data is critical for downstream applications (e.g. brain machine interface) and requires that popped segments be accurately interpolated. In this paper we frame the interpolation problem as a self-learning task using a deep encoder-decoder network. We compare our approach against contemporary interpolation methods on a publicly available EEG data set. Our approach exhibited a minimum of 15% improvement over contemporary approaches when tested on subjects and tasks not used during model training. We demonstrate how our model's performance can be enhanced further on novel subjects and tasks using transfer learning. All code and data associated with this study is open-source to enable ease of extension and practical use. To our knowledge, this work is the first solution to the EEG interpolation problem that uses deep learning.

Original languageEnglish (US)
Title of host publicationProceedings - 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020
EditorsTaesung Park, Young-Rae Cho, Xiaohua Tony Hu, Illhoi Yoo, Hyun Goo Woo, Jianxin Wang, Julio Facelli, Seungyoon Nam, Mingon Kang
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2432-2439
Number of pages8
ISBN (Electronic)9781728162157
DOIs
StatePublished - Dec 16 2020
Event2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020 - Virtual, Seoul, Korea, Republic of
Duration: Dec 16 2020Dec 19 2020

Publication series

NameProceedings - 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020

Conference

Conference2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020
Country/TerritoryKorea, Republic of
CityVirtual, Seoul
Period12/16/2012/19/20

ASJC Scopus subject areas

  • Computer Science Applications
  • Information Systems and Management
  • Medicine (miscellaneous)
  • Health Informatics

Fingerprint

Dive into the research topics of 'EEG Channel Interpolation Using Deep Encoder-decoder Networks'. Together they form a unique fingerprint.

Cite this