Effect of cameralike aperture in quest for maintaining quasi-constant radiation inside a solar reactor

Nesrin Ozalp, Anthony Toyama, Jayakrishna Devanuri, Reza Rowshan, Yasser Al-Hamidi

Research output: Contribution to journalArticle

Abstract

Solar reactors can convert intermittent solar radiation into storable chemical energy in the form of fuels that are transportable. In order to use solar energy as a source of high temperature process heat in a solar reactor, incident radiation needs to be concentrated over a small surface area, the inlet of which is called the aperture. The image of the incoming solar radiation over the aperture can be approximated by a Gaussian distribution where the solar radiation inside the reactor varies by the peak value and aperture size. Due to the transient nature of solar energy, there is a critical need for proper control to maximize system efficiency under field conditions. The objective of this paper is to present numerically proven advantages of having a camera-like variable aperture, one that is sensitive to natural variations in solar flux, and having the ability to shrink or enlarge accordingly in order to maintain quasi-constant radiation inside the reactor. Since the internal temperature has a major impact on reactant to product conversion efficiency, by maintaining the temperature constant, process efficiency is kept high. By maintaining the internal temperature despite transient operating conditions, the system can maintain peak performance through a wider insolation range than fixed aperture systems. Our numerical results from optical, thermodynamic, and flow dynamic simulations led us to develop a computational two dimensional heat transfer distribution model inside the reactor in order to validate our optical results. The combined simulation results show that correctly varying the aperture diameter with respect to transient incoming solar flux densities facilitates the maintenance of quasi-constant temperature distributions inside the reactor.

Original languageEnglish (US)
Article number021002
JournalJournal of Mechanical Design, Transactions of the ASME
Volume133
Issue number2
DOIs
StatePublished - Feb 4 2011

Keywords

  • aperture
  • dynamic controller
  • sensor
  • solar radiation
  • solar reactor

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Effect of cameralike aperture in quest for maintaining quasi-constant radiation inside a solar reactor'. Together they form a unique fingerprint.

  • Cite this