TY - JOUR
T1 - Effect of stratiform heating on the planetary-scale organization of tropical convection
AU - Deng, Qiang
AU - Khouider, Boualem
AU - Majda, Andrew J.
AU - Ajayamohan, R. S.
N1 - Publisher Copyright:
© 2016 American Meteorological Society.
PY - 2016
Y1 - 2016
N2 - It is widely recognized that stratiform heating contributes significantly to tropical rainfall and to the dynamics of tropical convective systems by inducing a front-to-rear tilt in the heating profile. Precipitating stratiform anvils that form from deep convection play a central role in the dynamics of tropical mesoscale convective systems. The wide spreading of downdrafts that are induced by the evaporation of stratiform rain and originate from in the lower troposphere strengthens the recirculation of subsiding air in the neighborhood of the convection center and triggers cold pools and gravity currents in the boundary layer, leading to further lifting. Here, aquaplanet simulations with a warm pool-like surface forcing, based on a coarse-resolution GCM of approximately 170-km grid mesh, coupled with a stochastic multicloud parameterization, are used to demonstrate the importance of stratiform heating for the organization of convection on planetary and intraseasonal scales. When the model parameters, which control the heating fraction and decay time scale of the stratiform clouds, are set to produce higher stratiform heating, the model produces low-frequency and planetary-scale MJO-like wave disturbances, while parameters associated with lower-to-moderate stratiform heating yield mainly synoptic-scale convectively coupled Kelvin-like waves. Furthermore, it is shown that, when the effect of stratiform downdrafts is reduced in the model, the MJO-scale organization is weakened, and a transition to synoptic-scale organization appears despite the use of larger stratiform heating parameters. Rooted in the stratiform instability, it is conjectured here that the strength and extent of stratiform downdrafts are key contributors to the scale selection of convective organizations, perhaps with mechanisms that are, in essence, similar to those of mesoscale convective systems.
AB - It is widely recognized that stratiform heating contributes significantly to tropical rainfall and to the dynamics of tropical convective systems by inducing a front-to-rear tilt in the heating profile. Precipitating stratiform anvils that form from deep convection play a central role in the dynamics of tropical mesoscale convective systems. The wide spreading of downdrafts that are induced by the evaporation of stratiform rain and originate from in the lower troposphere strengthens the recirculation of subsiding air in the neighborhood of the convection center and triggers cold pools and gravity currents in the boundary layer, leading to further lifting. Here, aquaplanet simulations with a warm pool-like surface forcing, based on a coarse-resolution GCM of approximately 170-km grid mesh, coupled with a stochastic multicloud parameterization, are used to demonstrate the importance of stratiform heating for the organization of convection on planetary and intraseasonal scales. When the model parameters, which control the heating fraction and decay time scale of the stratiform clouds, are set to produce higher stratiform heating, the model produces low-frequency and planetary-scale MJO-like wave disturbances, while parameters associated with lower-to-moderate stratiform heating yield mainly synoptic-scale convectively coupled Kelvin-like waves. Furthermore, it is shown that, when the effect of stratiform downdrafts is reduced in the model, the MJO-scale organization is weakened, and a transition to synoptic-scale organization appears despite the use of larger stratiform heating parameters. Rooted in the stratiform instability, it is conjectured here that the strength and extent of stratiform downdrafts are key contributors to the scale selection of convective organizations, perhaps with mechanisms that are, in essence, similar to those of mesoscale convective systems.
UR - http://www.scopus.com/inward/record.url?scp=84957641898&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84957641898&partnerID=8YFLogxK
U2 - 10.1175/JAS-D-15-0178.1
DO - 10.1175/JAS-D-15-0178.1
M3 - Article
AN - SCOPUS:84957641898
SN - 0022-4928
VL - 73
SP - 371
EP - 392
JO - Journal of the Atmospheric Sciences
JF - Journal of the Atmospheric Sciences
IS - 1
ER -