Abstract
Establishing durable disease resistance in agricultural crops, where much of the plant defense is provided through effector-R gene interactions, is complicated by the ability of pathogens to overcome R gene resistance by losing the corresponding effector gene. Many proposed methods to maintain disease resistance in the field depend on the idea that effector gene loss results in a fitness cost to the pathogen. In this article we test for fitness costs of effector gene function loss. We created directed knockouts of up to four effector genes from the bacterial plant pathogen Xanthomonas axonopodis pv. vesicatoria (Xav) and examined the effect of the loss of a functional gene product on several important fitness parameters in the field. These traits included transmission, lesion development, and epiphytic survival. We found that the products of all four effector genes had significant and often additive effects on fitness traits. Additional greenhouse tests revealed costs of effector gene loss on in planta growth and further showed that the effects on lesion development were separable from the effects on growth. Observable fitness effects of the three plasmid-borne effector genes were dependent upon the loss of functional avrBs2, indicating that complex functional interactions exist among effector genes with Xav.
Original language | English (US) |
---|---|
Pages (from-to) | 693-706 |
Number of pages | 14 |
Journal | Genetics |
Volume | 166 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2004 |
ASJC Scopus subject areas
- Genetics