TY - JOUR
T1 - Effects of different surface treatments on bond strength of resin cement to machined pure titanium
AU - Cao, Yang
AU - Guo, Yan Yang
AU - Chen, Lei
AU - Han, Jing
AU - Tong, Hui
AU - Zhang, Bao
AU - Zhang, Yu
N1 - Publisher Copyright:
© Quintessenz.
PY - 2019
Y1 - 2019
N2 - Purpose: To investigate the effects of grit blasting, acidic or alkaline/heat treatments, and metal primer application on the shear bond strength (SBS) of resin cement to machined commercially pure titanium (CP-Ti). Materials and Methods: Titanium plates were machined and received one of the following treatments: grit-blasting (GB), or grit-blasting followed by either acidic treatment (GB/AC) or alkaline/heat treatment (GB/AH). The specimens were randomly divided into 4 groups and treated with Rely X Ceramic Primer (RCP), Z Prime Plus (ZPP), and Alloy Primer (ALP), or without primer as the control. The pairs of titanium plates were cemented together with the Rely X Unicem cement. SBS was measured before and after thermocycling between 5°C and 55°C for 5000 cycles. Results: SEM observation showed that honeycomb-shaped pores formed on the surface of machined CP-Ti after GB/AC treatment, whereas a uniform net-like pattern formed after GB/AH treatment. In descending order, the surface roughness was GB, GB/AC, and GB/AH. The GB/AH group showed the highest SBS among all the treatments. As for primers, ALP group showed the highest SBS, while the RCP group showed the lowest. GB followed by ALP presented the highest SBS. Conclusion: A fine, uniform network structure was formed on the surface of CP-Ti following GB/AH treatment, providing an effective micromechanical interlocking mechanism for resin bonding. At the same time, after AH treatment, the -OH formed on the surface of the machined CP-Ti triggered a chemical reaction with the acid monomers in the resin adhesives, creating a chemical bond. As a result, GB/AH treatment significantly improved the bond strength relative to GB/AC treatment. In addition, ALP treatment facilitated the formation of hydrogen bonds, which further improved the chemical bond strength. Finally, the combination of the effects mentioned above resulted in the most robust bond between machined CP-Ti and the resin adhesives.
AB - Purpose: To investigate the effects of grit blasting, acidic or alkaline/heat treatments, and metal primer application on the shear bond strength (SBS) of resin cement to machined commercially pure titanium (CP-Ti). Materials and Methods: Titanium plates were machined and received one of the following treatments: grit-blasting (GB), or grit-blasting followed by either acidic treatment (GB/AC) or alkaline/heat treatment (GB/AH). The specimens were randomly divided into 4 groups and treated with Rely X Ceramic Primer (RCP), Z Prime Plus (ZPP), and Alloy Primer (ALP), or without primer as the control. The pairs of titanium plates were cemented together with the Rely X Unicem cement. SBS was measured before and after thermocycling between 5°C and 55°C for 5000 cycles. Results: SEM observation showed that honeycomb-shaped pores formed on the surface of machined CP-Ti after GB/AC treatment, whereas a uniform net-like pattern formed after GB/AH treatment. In descending order, the surface roughness was GB, GB/AC, and GB/AH. The GB/AH group showed the highest SBS among all the treatments. As for primers, ALP group showed the highest SBS, while the RCP group showed the lowest. GB followed by ALP presented the highest SBS. Conclusion: A fine, uniform network structure was formed on the surface of CP-Ti following GB/AH treatment, providing an effective micromechanical interlocking mechanism for resin bonding. At the same time, after AH treatment, the -OH formed on the surface of the machined CP-Ti triggered a chemical reaction with the acid monomers in the resin adhesives, creating a chemical bond. As a result, GB/AH treatment significantly improved the bond strength relative to GB/AC treatment. In addition, ALP treatment facilitated the formation of hydrogen bonds, which further improved the chemical bond strength. Finally, the combination of the effects mentioned above resulted in the most robust bond between machined CP-Ti and the resin adhesives.
KW - Bond strength
KW - Metal primer
KW - Pure titanium
KW - Resin cement
UR - http://www.scopus.com/inward/record.url?scp=85073612863&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85073612863&partnerID=8YFLogxK
U2 - 10.3290/j.jad.a43182
DO - 10.3290/j.jad.a43182
M3 - Article
C2 - 31624805
AN - SCOPUS:85073612863
SN - 1461-5185
VL - 21
SP - 401
EP - 411
JO - Journal of Adhesive Dentistry
JF - Journal of Adhesive Dentistry
IS - 5
ER -