TY - GEN
T1 - Effects of Graphene on Twisting of High Density Polyethylene
AU - Anilal, Ashish
AU - Bendesky, Justin
AU - Jeong, Sehee
AU - Lee, Stephanie S.
AU - Bozlar, Michael
N1 - Publisher Copyright:
© Proceedings of the American Society for Composites - 37th Technical Conference, ASC 2022. All rights reserved.
PY - 2022
Y1 - 2022
N2 - High density polyethylene (HDPE) is known to form banded spherulites when crystallized from the melt. In such spherulites, concentric bands of alternating light and dark colors emanating from the spherulite nucleation center are observable between cross polarizers and appear as a function of the anisotropy of the dielectric susceptibility as crystal orientations continuously rotate about the growth direction. Recently, we identified PE to be a promising compound to induce twisting in conjugated carbonaceous systems, such as triisopropylsilylethynyl anthradithiophene (TIPS ADT). When blended together in ratios between 10 - 70 wt.% PE, TIPS ADT and PE crystals twist in concert with one another to form composite films of intertwined helicoidal fibrils. In this work, we investigate crystal twisting in HDPE-graphene oxide composites. In addition to its unique multifunctionality, graphene has also recently demonstrated peculiar twisting capabilities that strongly alter its physical properties. Here, we first produce graphene sheets through the chemical oxidation of natural graphite, and then investigate the influence of graphene on the twisting of HDPE composites under various processing parameters (graphene concentration, polymer cooling rate, etc). HDPE-graphene composites have been prepared using melt extrusion in the form of microfibers and films. We measured the influence of twisting on the mechanical and electrical properties of the composites, as well as the crystallographic structure using optical and electron microscopy, and X-Ray diffraction spectroscopy.
AB - High density polyethylene (HDPE) is known to form banded spherulites when crystallized from the melt. In such spherulites, concentric bands of alternating light and dark colors emanating from the spherulite nucleation center are observable between cross polarizers and appear as a function of the anisotropy of the dielectric susceptibility as crystal orientations continuously rotate about the growth direction. Recently, we identified PE to be a promising compound to induce twisting in conjugated carbonaceous systems, such as triisopropylsilylethynyl anthradithiophene (TIPS ADT). When blended together in ratios between 10 - 70 wt.% PE, TIPS ADT and PE crystals twist in concert with one another to form composite films of intertwined helicoidal fibrils. In this work, we investigate crystal twisting in HDPE-graphene oxide composites. In addition to its unique multifunctionality, graphene has also recently demonstrated peculiar twisting capabilities that strongly alter its physical properties. Here, we first produce graphene sheets through the chemical oxidation of natural graphite, and then investigate the influence of graphene on the twisting of HDPE composites under various processing parameters (graphene concentration, polymer cooling rate, etc). HDPE-graphene composites have been prepared using melt extrusion in the form of microfibers and films. We measured the influence of twisting on the mechanical and electrical properties of the composites, as well as the crystallographic structure using optical and electron microscopy, and X-Ray diffraction spectroscopy.
UR - http://www.scopus.com/inward/record.url?scp=85139554662&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85139554662&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85139554662
T3 - Proceedings of the American Society for Composites - 37th Technical Conference, ASC 2022
BT - Proceedings of the American Society for Composites - 37th Technical Conference, ASC 2022
A2 - Zhupanska, Olesya
A2 - Madenci, Erdogan
PB - DEStech Publications Inc.
T2 - 37th Technical Conference of the American Society for Composites, ASC 2022
Y2 - 19 September 2022 through 21 September 2022
ER -