Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons

Yan Karklin, Eero P. Simoncelli

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Efficient coding provides a powerful principle for explaining early sensory coding. Most attempts to test this principle have been limited to linear, noiseless models, and when applied to natural images, have yielded oriented filters consistent with responses in primary visual cortex. Here we show that an efficient coding model that incorporates biologically realistic ingredients - input and output noise, nonlinear response functions, and a metabolic cost on the firing rate - predicts receptive fields and response nonlinearities similar to those observed in the retina. Specifically, we develop numerical methods for simultaneously learning the linear filters and response nonlinearities of a population of model neurons, so as to maximize information transmission subject to metabolic costs. When applied to an ensemble of natural images, the method yields filters that are center-surround and nonlinearities that are rectifying. The filters are organized into two populations, with On- and Off-centers, which independently tile the visual space. As observed in the primate retina, the Off-center neurons are more numerous and have filters with smaller spatial extent. In the absence of noise, our method reduces to a generalized version of independent components analysis, with an adapted nonlinear "contrast" function; in this case, the optimal filters are localized and oriented.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 24
Subtitle of host publication25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
StatePublished - 2011
Event25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011 - Granada, Spain
Duration: Dec 12 2011Dec 14 2011

Publication series

NameAdvances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011

Other

Other25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
CountrySpain
CityGranada
Period12/12/1112/14/11

ASJC Scopus subject areas

  • Information Systems

Fingerprint Dive into the research topics of 'Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons'. Together they form a unique fingerprint.

  • Cite this

    Karklin, Y., & Simoncelli, E. P. (2011). Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons. In Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011 (Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011).