Abstract
Burst detection is the activity of finding abnormal aggregates in data streams. Such aggregates are based on sliding windows over data streams. In some applications, we want to monitor many sliding window sizes simultaneously and to report those windows with aggregates significantly different from other periods. We will present a general data structure for detecting interesting aggregates over such elastic windows in near linear time. We present applications of the algorithm for detecting Gamma Ray Bursts in large-scale astrophysical data. Detection of periods with high volumes of trading activities and high stock price volatility is also demonstrated using real time Trade and Quote (TAQ) data from the New York Stock Exchange (NYSE). Our algorithm beats the direct computation approach by several orders of magnitude.
Original language | English (US) |
---|---|
Title of host publication | Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '03 |
Pages | 336-345 |
Number of pages | 10 |
DOIs | |
State | Published - 2003 |
Event | 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '03 - Washington, DC, United States Duration: Aug 24 2003 → Aug 27 2003 |
Other
Other | 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '03 |
---|---|
Country/Territory | United States |
City | Washington, DC |
Period | 8/24/03 → 8/27/03 |
Keywords
- Data stream
- Elastic burst
ASJC Scopus subject areas
- Software
- Information Systems