Efficient Learning of Sparse Representations with an Energy-Based Model

Marc'Aurelio Ranzato, Christopher Poultney, Sumit Chopra, Yann LeCun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We describe a novel unsupervised method for learning sparse, overcomplete features. The model uses a linear encoder, and a linear decoder preceded by a sparsifying non-linearity that turns a code vector into a quasi-binary sparse code vector. Given an input, the optimal code minimizes the distance between the output of the decoder and the input patch while being as similar as possible to the encoder output. Learning proceeds in a two-phase EM-like fashion: (1) compute the minimum-energy code vector, (2) adjust the parameters of the encoder and decoder so as to decrease the energy. The model produces “stroke detectors” when trained on handwritten numerals, and Gabor-like filters when trained on natural image patches. Inference and learning are very fast, requiring no preprocessing, and no expensive sampling. Using the proposed unsupervised method to initialize the first layer of a convolutional network, we achieved an error rate slightly lower than the best reported result on the MNIST dataset. Finally, an extension of the method is described to learn topographical filter maps.

Original languageEnglish (US)
Title of host publicationNIPS 2006
Subtitle of host publicationProceedings of the 19th International Conference on Neural Information Processing Systems
EditorsBernhard Scholkopf, John C. Platt, Thomas Hofmann
PublisherMIT Press Journals
Pages1137-1144
Number of pages8
ISBN (Electronic)0262195682, 9780262195683
StatePublished - 2006
Event19th International Conference on Neural Information Processing Systems, NIPS 2006 - Vancouver, Canada
Duration: Dec 4 2006Dec 7 2006

Publication series

NameNIPS 2006: Proceedings of the 19th International Conference on Neural Information Processing Systems

Conference

Conference19th International Conference on Neural Information Processing Systems, NIPS 2006
Country/TerritoryCanada
CityVancouver
Period12/4/0612/7/06

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Efficient Learning of Sparse Representations with an Energy-Based Model'. Together they form a unique fingerprint.

Cite this