Efficient probabilistic and geometric anatomical mapping using particle mesh approximation on GPUs

Linh Ha, Marcel Prastawa, Guido Gerig, John H. Gilmore, Cláudio T. Silva, Sarang Joshi

Research output: Contribution to journalArticlepeer-review

Abstract

Deformable image registration in the presence of considerable contrast differences and large size and shape changes presents significant research challenges. First, it requires a robust registration framework that does not depend on intensity measurements and can handle large nonlinear shape variations. Second, it involves the expensive computation of nonlinear deformations with high degrees of freedom. Often it takes a significant amount of computation time and thus becomes infeasible for practical purposes. In this paper, we present a solution based on two key ideas: a new registration method that generates a mapping between anatomies represented as a multicompartment model of class posterior images and geometries and an implementation of the algorithm using particle mesh approximation on Graphical Processing Units (GPUs) to fulfill the computational requirements. We show results on the registrations of neonatal to 2-year old infant MRIs. Quantitative validation demonstrates that our proposed method generates registrations that better maintain the consistency of anatomical structures over time and provides transformations that better preserve structures undergoing large deformations than transformations obtained by standard intensity-only registration. We also achieve the speedup of three orders of magnitudes compared to a CPU reference implementation, making it possible to use the technique in time-critical applications.

Original languageEnglish (US)
Article number572187
JournalInternational Journal of Biomedical Imaging
Volume2011
DOIs
StatePublished - 2011

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Efficient probabilistic and geometric anatomical mapping using particle mesh approximation on GPUs'. Together they form a unique fingerprint.

Cite this