Abstract
We introduce elastic textures: a set of parametric, tileable, printable, cubic patterns achieving a broad range of isotropic elastic material properties: the softest pattern is over a thousand times softer than the stiffest, and the Poisson's ratios range from below zero to nearly 0.5. Using a combinatorial search over topologies followed by shape optimization, we explore a wide space of truss-like, symmetric 3D patterns to obtain a small family. This pattern family can be printed without internal support structure on a single-material 3D printer and can be used to fabricate objects with prescribed mechanical behavior. The family can be extended easily to create anisotropic patterns with target orthotropic properties. We demonstrate that our elastic textures are able to achieve a user-supplied varying material property distribution. We also present a material optimization algorithm to choose material properties at each point within an object to best fit a target deformation under a prescribed scenario. We show that, by fabricating these spatially varying materials with elastic textures, the desired behavior is achieved. Copyright is held by the owner/author(s).
Original language | English (US) |
---|---|
Title of host publication | Proceedings of ACM SIGGRAPH 2015 |
Publisher | Association for Computing Machinery |
Volume | 34 |
Edition | 4 |
ISBN (Electronic) | 9781450333313 |
DOIs | |
State | Published - Jul 27 2015 |
Event | ACM Special Interest Group on Computer Graphics and Interactive Techniques Conference, SIGGRAPH 2015 - Los Angeles, United States Duration: Aug 9 2015 → Aug 13 2015 |
Conference
Conference | ACM Special Interest Group on Computer Graphics and Interactive Techniques Conference, SIGGRAPH 2015 |
---|---|
Country/Territory | United States |
City | Los Angeles |
Period | 8/9/15 → 8/13/15 |
Keywords
- Additive fabrication
- Deformable objects
- Goal-based material design
- Homogenization
- Microstructures
- Shape optimization
ASJC Scopus subject areas
- Computer Graphics and Computer-Aided Design