Electromechanical modelling of a new class of nanocomposite cement-based sensors for structural health monitoring

Antonella D’Alessandro, Filippo Ubertini, Annibale Luigi Materazzi, Simon Laflamme, Maurizio Porfiri

Research output: Contribution to journalArticlepeer-review


This work focuses on the analysis of a new nanocomposite cement-based sensor (carbon nanotube cement-based sensor), for applications in vibration-based structural health monitoring of civil engineering structures. The sensor is constituted of a cement paste doped with multi-walled carbon nanotubes, so that mechanical deformations produce a measurable change of the electrical resistance. Prior work of some of the authors has addressed the fabrication process, dynamic behaviour and implementation to full-scale structural components. Here, we investigate the effectiveness of a linear lumped-circuit electromechanical model, in which dynamic sensing is associated with a strain-dependent modulation of the internal resistance. Salient circuit parameters are identified from a series of experiments where the distance between the electrodes is parametrically varied. Experimental results indicate that the lumped-circuit model is capable of accurately predicting the step response to a voltage input and its steady-state response to a harmonic uniaxial deformation. Importantly, the model is successful in anticipating the presence of a superharmonic component in sensor’s output.

Original languageEnglish (US)
Pages (from-to)137-147
Number of pages11
JournalStructural Health Monitoring
Issue number2
StatePublished - Mar 26 2015


  • Carbon nanotubes
  • electromechanical model
  • nanotechnology
  • smart materials
  • smart sensors
  • structural health monitoring

ASJC Scopus subject areas

  • Mechanical Engineering
  • Biophysics


Dive into the research topics of 'Electromechanical modelling of a new class of nanocomposite cement-based sensors for structural health monitoring'. Together they form a unique fingerprint.

Cite this