Electronic polarization stabilizes tertiary structure prediction of HP-36

Li L. Duan, Tong Zhu, Qing G. Zhang, Bo Tang, John Z.H. Zhang

Research output: Contribution to journalArticlepeer-review

Abstract

Molecular dynamic (MD) simulations with both implicit and explicit solvent models have been carried out to study the folding dynamics of HP-36 protein. Starting from the extended conformation, the secondary structure of all three helices in HP-36 was formed in about 50 ns and remained stable in the remaining simulation. However, the formation of the tertiary structure was difficult. Although some intermediates were close to the native structure, the overall conformation was not stable. Further analysis revealed that the large structure fluctuation of loop and hydrophobic core regions was devoted mostly to the instability of the structure during MD simulation. The backbone root-mean-square deviation (RMSD) of the loop and hydrophobic core regions showed strong correlation with the backbone RMSD of the whole protein. The free energy landscape indicated that the distribution of main chain torsions in loop and turn regions was far away from the native state. Starting from an intermediate structure extracted from the initial AMBER simulation, HP-36 was found to generally fold to the native state under the dynamically adjusted polarized protein-specific charge (DPPC) simulation, while the peptide did not fold into the native structure when AMBER force filed was used. The two best folded structures were extracted and taken into further simulations in water employing AMBER03 charge and DPPC for 25 ns. Result showed that introducing polarization effect into interacting potential could stabilize the near-native protein structure.

Original languageEnglish (US)
Article number2195
JournalJournal of Molecular Modeling
Volume20
Issue number4
DOIs
StatePublished - Apr 2014

Keywords

  • Molecular dynamics
  • Polarization effect
  • Protein folding
  • Solvent model

ASJC Scopus subject areas

  • Catalysis
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Computational Theory and Mathematics
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Electronic polarization stabilizes tertiary structure prediction of HP-36'. Together they form a unique fingerprint.

Cite this