TY - JOUR
T1 - Emergent Communication in Multi-Agent Reinforcement Learning for Future Wireless Networks
AU - Chafii, Marwa
AU - Naoumi, Salmane
AU - Alami, Reda
AU - Almazrouei, Ebtesam
AU - Bennis, Mehdi
AU - Debbah, Merouane
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2023/12/1
Y1 - 2023/12/1
N2 - In different wireless network scenarios, multiple network entities need to cooperate in order to achieve a common task with minimum delay and energy consumption. Future wireless networks mandate exchanging high dimensional data in dynamic and uncertain environments, therefore implementing communication control tasks becomes challenging and highly complex. Multi-agent reinforcement learning with emergent communication (EC-MARL) is a promising solution to address high dimensional continuous control problems with partially observable states in a cooperative fashion where agents build an emergent communication protocol to solve complex tasks. This article articulates the importance of EC-MARL within the context of future 6G wireless networks, which imbues autonomous decision-making capabilities into network entities to solve complex tasks such as autonomous driving, robot navigation, flying base stations network planning, and smart city applications. An overview of EC-MARL algorithms and their design criteria are provided while presenting use cases and research opportuni-ties on this emerging topic.
AB - In different wireless network scenarios, multiple network entities need to cooperate in order to achieve a common task with minimum delay and energy consumption. Future wireless networks mandate exchanging high dimensional data in dynamic and uncertain environments, therefore implementing communication control tasks becomes challenging and highly complex. Multi-agent reinforcement learning with emergent communication (EC-MARL) is a promising solution to address high dimensional continuous control problems with partially observable states in a cooperative fashion where agents build an emergent communication protocol to solve complex tasks. This article articulates the importance of EC-MARL within the context of future 6G wireless networks, which imbues autonomous decision-making capabilities into network entities to solve complex tasks such as autonomous driving, robot navigation, flying base stations network planning, and smart city applications. An overview of EC-MARL algorithms and their design criteria are provided while presenting use cases and research opportuni-ties on this emerging topic.
UR - http://www.scopus.com/inward/record.url?scp=85192297966&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85192297966&partnerID=8YFLogxK
U2 - 10.1109/IOTM.001.2300102
DO - 10.1109/IOTM.001.2300102
M3 - Article
AN - SCOPUS:85192297966
SN - 2576-3180
VL - 6
SP - 18
EP - 24
JO - IEEE Internet of Things Magazine
JF - IEEE Internet of Things Magazine
IS - 4
ER -