TY - JOUR

T1 - Encoding nearest larger values

AU - Hoffmann, Michael

AU - Iacono, John

AU - Nicholson, Patrick K.

AU - Raman, Rajeev

N1 - Publisher Copyright:
© 2017 Elsevier B.V.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2018/2/1

Y1 - 2018/2/1

N2 - In nearest larger value (NLV) problems, we are given an array A[1.n] of distinct numbers, and need to preprocess A to answer queries of the following form: given any index i∈[1,n], return a “nearest” index j such that A[j]>A[i]. We consider the variant where the values in A are distinct, and we wish to return an index j such that A[j]>A[i] and |j−i| is minimized, the nondirectional NLV (NNLV) problem. We consider NNLV in the encoding model, where the array A is deleted after preprocessing. The NNLV encoding problem turns out to have an unexpectedly rich structure: the effective entropy (optimal space usage) of the problem depends crucially on details in the definition of the problem. Of particular interest is the tiebreaking rule: if there exist two nearest indices j1,j2 such that A[j1]>A[i] and A[j2]>A[i] and |j1−i|=|j2−i|, then which index should be returned? For the tiebreaking rule where the rightmost (i.e., largest) index is returned, we encode a path-compressed representation of the Cartesian tree that can answer all NNLV queries in 1.89997n+o(n) bits, and can answer queries in O(1) time. An alternative approach, based on forbidden patterns, achieves a very similar space bound for two tiebreaking rules (including the one where ties are broken to the right), and (for a more flexible tiebreaking rule) achieves 1.81211n+o(n) bits. Finally, we develop a fast method of counting distinguishable configurations for NNLV queries. Using this method, we prove a lower bound of 1.62309n−Θ(1) bits of space for NNLV encodings for the tiebreaking rule where the rightmost index is returned.

AB - In nearest larger value (NLV) problems, we are given an array A[1.n] of distinct numbers, and need to preprocess A to answer queries of the following form: given any index i∈[1,n], return a “nearest” index j such that A[j]>A[i]. We consider the variant where the values in A are distinct, and we wish to return an index j such that A[j]>A[i] and |j−i| is minimized, the nondirectional NLV (NNLV) problem. We consider NNLV in the encoding model, where the array A is deleted after preprocessing. The NNLV encoding problem turns out to have an unexpectedly rich structure: the effective entropy (optimal space usage) of the problem depends crucially on details in the definition of the problem. Of particular interest is the tiebreaking rule: if there exist two nearest indices j1,j2 such that A[j1]>A[i] and A[j2]>A[i] and |j1−i|=|j2−i|, then which index should be returned? For the tiebreaking rule where the rightmost (i.e., largest) index is returned, we encode a path-compressed representation of the Cartesian tree that can answer all NNLV queries in 1.89997n+o(n) bits, and can answer queries in O(1) time. An alternative approach, based on forbidden patterns, achieves a very similar space bound for two tiebreaking rules (including the one where ties are broken to the right), and (for a more flexible tiebreaking rule) achieves 1.81211n+o(n) bits. Finally, we develop a fast method of counting distinguishable configurations for NNLV queries. Using this method, we prove a lower bound of 1.62309n−Θ(1) bits of space for NNLV encodings for the tiebreaking rule where the rightmost index is returned.

KW - Data structures

KW - Encoding data structures

KW - Succinct data structures

UR - http://www.scopus.com/inward/record.url?scp=85015756416&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85015756416&partnerID=8YFLogxK

U2 - 10.1016/j.tcs.2017.02.017

DO - 10.1016/j.tcs.2017.02.017

M3 - Article

AN - SCOPUS:85015756416

VL - 710

SP - 97

EP - 115

JO - Theoretical Computer Science

JF - Theoretical Computer Science

SN - 0304-3975

ER -