Abstract
Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolution which degrades with energy above ∼ 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of 136Xe at its Q value, Qββ≃2.46MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1σ/μ is as low as (0.80 ± 0.02) % in its one-ton fiducial mass, and for single-site interactions at Qββ. We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events.
Original language | English (US) |
---|---|
Article number | 785 |
Journal | European Physical Journal C |
Volume | 80 |
Issue number | 8 |
DOIs | |
State | Published - Aug 1 2020 |
ASJC Scopus subject areas
- Engineering (miscellaneous)
- Physics and Astronomy (miscellaneous)
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Energy resolution and linearity of XENON1T in the MeV energy range'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Energy resolution and linearity of XENON1T in the MeV energy range. / Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F. D.; Antochi, V. C.; Angelino, E.; Angevaare, J.; Arneodo, F.; Barge, D.; Baudis, L.; Bauermeister, B.; Bellagamba, L.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Capelli, C.; Cardoso, J. M.R.; Cichon, D.; Cimmino, B.; Clark, M.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; Depoian, A.; Di Gangi, P.; Di Giovanni, A.; Di Stefano, R.; Diglio, S.; Elykov, A.; Eurin, G.; Ferella, A. D.; Fulgione, W.; Gaemers, P.; Gaior, R.; Rosso, A. Gallo; Galloway, M.; Gao, F.; Garbini, M.; Grandi, L.; Hasterok, C.; Hils, C.; Hiraide, K.; Hoetzsch, L.; Hogenbirk, E.; Howlett, J.; Iacovacci, M.; Itow, Y.; Joerg, F.; Kato, N.; Kazama, S.; Kobayashi, M.; Koltman, G.; Kopec, A.; Landsman, H.; Lang, R. F.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A.M.; Fune, E. López; Macolino, C.; Mahlstedt, J.; Manenti, L.; Manfredini, A.; Marignetti, F.; Undagoitia, T. Marrodán; Martens, K.; Masbou, J.; Masson, D.; Mastroianni, S.; Messina, M.; Miuchi, K.; Molinario, A.; Morå, K.; Moriyama, S.; Mosbacher, Y.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Odgers, K.; Palacio, J.; Pelssers, B.; Peres, R.; Pienaar, J.; Pizzella, V.; Plante, G.; Qin, J.; Qiu, H.; García, D. Ramírez; Reichard, S.; Rocchetti, A.; Rupp, N.; dos Santos, J. M.F.; Sartorelli, G.; Šarčević, N.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schulte, D.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Semeria, F.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Takeda, A.; Therreau, C.; Thers, D.; Toschi, F.; Trinchero, G.; Tunnell, C.; Vargas, M.; Volta, G.; Wack, O.; Wang, H.; Wei, Y.; Weinheimer, C.; Xu, M. Weiss; Wenz, D.; Wittweg, C.; Wulf, J.; Xu, Z.; Yamashita, M.; Ye, J.; Zavattini, G.; Zhang, Y.; Zhu, T.; Zopounidis, J. P.
In: European Physical Journal C, Vol. 80, No. 8, 785, 01.08.2020.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Energy resolution and linearity of XENON1T in the MeV energy range
AU - Aprile, E.
AU - Aalbers, J.
AU - Agostini, F.
AU - Alfonsi, M.
AU - Althueser, L.
AU - Amaro, F. D.
AU - Antochi, V. C.
AU - Angelino, E.
AU - Angevaare, J.
AU - Arneodo, F.
AU - Barge, D.
AU - Baudis, L.
AU - Bauermeister, B.
AU - Bellagamba, L.
AU - Benabderrahmane, M. L.
AU - Berger, T.
AU - Breur, P. A.
AU - Brown, A.
AU - Brown, E.
AU - Bruenner, S.
AU - Bruno, G.
AU - Budnik, R.
AU - Capelli, C.
AU - Cardoso, J. M.R.
AU - Cichon, D.
AU - Cimmino, B.
AU - Clark, M.
AU - Coderre, D.
AU - Colijn, A. P.
AU - Conrad, J.
AU - Cussonneau, J. P.
AU - Decowski, M. P.
AU - Depoian, A.
AU - Di Gangi, P.
AU - Di Giovanni, A.
AU - Di Stefano, R.
AU - Diglio, S.
AU - Elykov, A.
AU - Eurin, G.
AU - Ferella, A. D.
AU - Fulgione, W.
AU - Gaemers, P.
AU - Gaior, R.
AU - Rosso, A. Gallo
AU - Galloway, M.
AU - Gao, F.
AU - Garbini, M.
AU - Grandi, L.
AU - Hasterok, C.
AU - Hils, C.
AU - Hiraide, K.
AU - Hoetzsch, L.
AU - Hogenbirk, E.
AU - Howlett, J.
AU - Iacovacci, M.
AU - Itow, Y.
AU - Joerg, F.
AU - Kato, N.
AU - Kazama, S.
AU - Kobayashi, M.
AU - Koltman, G.
AU - Kopec, A.
AU - Landsman, H.
AU - Lang, R. F.
AU - Levinson, L.
AU - Lin, Q.
AU - Lindemann, S.
AU - Lindner, M.
AU - Lombardi, F.
AU - Lopes, J. A.M.
AU - Fune, E. López
AU - Macolino, C.
AU - Mahlstedt, J.
AU - Manenti, L.
AU - Manfredini, A.
AU - Marignetti, F.
AU - Undagoitia, T. Marrodán
AU - Martens, K.
AU - Masbou, J.
AU - Masson, D.
AU - Mastroianni, S.
AU - Messina, M.
AU - Miuchi, K.
AU - Molinario, A.
AU - Morå, K.
AU - Moriyama, S.
AU - Mosbacher, Y.
AU - Murra, M.
AU - Naganoma, J.
AU - Ni, K.
AU - Oberlack, U.
AU - Odgers, K.
AU - Palacio, J.
AU - Pelssers, B.
AU - Peres, R.
AU - Pienaar, J.
AU - Pizzella, V.
AU - Plante, G.
AU - Qin, J.
AU - Qiu, H.
AU - García, D. Ramírez
AU - Reichard, S.
AU - Rocchetti, A.
AU - Rupp, N.
AU - dos Santos, J. M.F.
AU - Sartorelli, G.
AU - Šarčević, N.
AU - Scheibelhut, M.
AU - Schindler, S.
AU - Schreiner, J.
AU - Schulte, D.
AU - Schumann, M.
AU - Lavina, L. Scotto
AU - Selvi, M.
AU - Semeria, F.
AU - Shagin, P.
AU - Shockley, E.
AU - Silva, M.
AU - Simgen, H.
AU - Takeda, A.
AU - Therreau, C.
AU - Thers, D.
AU - Toschi, F.
AU - Trinchero, G.
AU - Tunnell, C.
AU - Vargas, M.
AU - Volta, G.
AU - Wack, O.
AU - Wang, H.
AU - Wei, Y.
AU - Weinheimer, C.
AU - Xu, M. Weiss
AU - Wenz, D.
AU - Wittweg, C.
AU - Wulf, J.
AU - Xu, Z.
AU - Yamashita, M.
AU - Ye, J.
AU - Zavattini, G.
AU - Zhang, Y.
AU - Zhu, T.
AU - Zopounidis, J. P.
N1 - Funding Information: We gratefully acknowledge support from the National Science Foundation, Swiss National Science Foundation, German Ministry for Education and Research, Max Planck Gesellschaft, Deutsche Forschungsgemeinschaft, Netherlands Organisation for Scientific Research (NWO), Netherlands eScience Center (NLeSC) with the support of the SURF Cooperative, Weizmann Institute of Science, Israeli Centers Of Research Excellence (I-CORE), Pazy-Vatat, Fundacao para a Ciencia e a Tecnologia, Région des Pays de la Loire, Knut and Alice Wallenberg Foundation, Kavli Foundation, and Istituto Nazionale di Fisica Nucleare. This project has received funding or support from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreements nos. 690575 and 674896, respectively. Data processing is performed using infrastructures from the Open Science Grid and European Grid Initiative. We are grateful to Laboratori Nazionali del Gran Sasso for hosting and supporting the XENON project. Publisher Copyright: © 2020, The Author(s).
PY - 2020/8/1
Y1 - 2020/8/1
N2 - Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolution which degrades with energy above ∼ 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of 136Xe at its Q value, Qββ≃2.46MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1σ/μ is as low as (0.80 ± 0.02) % in its one-ton fiducial mass, and for single-site interactions at Qββ. We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events.
AB - Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolution which degrades with energy above ∼ 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of 136Xe at its Q value, Qββ≃2.46MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1σ/μ is as low as (0.80 ± 0.02) % in its one-ton fiducial mass, and for single-site interactions at Qββ. We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events.
UR - http://www.scopus.com/inward/record.url?scp=85089953001&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089953001&partnerID=8YFLogxK
U2 - 10.1140/epjc/s10052-020-8284-0
DO - 10.1140/epjc/s10052-020-8284-0
M3 - Article
AN - SCOPUS:85089953001
VL - 80
JO - European Physical Journal C
JF - European Physical Journal C
SN - 1434-6044
IS - 8
M1 - 785
ER -