Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis

Lara K. Mahal, Kevin J. Yarema, Carolyn R. Bertozzi

Research output: Contribution to journalArticlepeer-review

Abstract

Cell surface oligosaccharides can be engineered to display unusual functional groups for the selective chemical remodeling of cell surfaces. An unnatural derivative of N-acetylmannosamine, which has a ketone group, was converted to the corresponding sialic acid and incorporated into cell surface oligosaccharides metabolically, resulting in the cell surface display of ketone groups. The ketone group on the cell surface can then be covalently ligated under physiological conditions with molecules carrying a complementary reactive functional group such as the hydrazide. Cell surface reactions of this kind should prove useful in the introduction of new recognition epitopes, such as peptides, oligosaccharides, or small organic molecules, onto cell surfaces and in the subsequent modulation of cell-cell or cell-small molecule binding events. The versatility of this technology was demonstrated by an example of selective drug delivery. Cells were decorated with biotin through selective conjugation to ketone groups, and selectively killed in the presence of a ricin A chain-avidin conjugate.

Original languageEnglish (US)
Pages (from-to)1125-1128
Number of pages4
JournalScience
Volume276
Issue number5315
DOIs
StatePublished - May 16 1997

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis'. Together they form a unique fingerprint.

Cite this