TY - JOUR
T1 - Engineering endochondral bone
T2 - In vivo studies
AU - Oliveira, Serafim M.
AU - Mijares, Dindo Q.
AU - Turner, Gloria
AU - Amaral, Isabel F.
AU - Barbosa, Mário A.
AU - Teixeira, Cristina C.
PY - 2009/3/1
Y1 - 2009/3/1
N2 - The use of biomaterials to replace lost bone has been a common practice for decades. More recently, the demands for bone repair and regeneration have pushed research into the use of cultured cells and growth factors in association with these materials. Here we report a novel approach to engineer new bone using a transient cartilage scaffold to induce endochondral ossification. Chondrocyte/chitosan scaffolds (both a transient cartilage scaffold- experimental-and a permanent cartilage scaffold-control) were prepared and implanted subcutaneously in nude mice. Bone formation was evaluated over a period of 5 months. Mineralization was assessed by Faxitron, micro computed tomography, backscatter electrons, and Fourier transform infrared spectroscopy analyses. Histological analysis provided further information on tissue changes in and around the implanted scaffolds. The deposition of ectopic bone was detected in the surface of the experimental implants as early as 1 month after implantation. After 3 months, bone trabeculae and bone marrow cavities were formed inside the scaffolds. The bone deposited was similar to the bone of the mice vertebra. Interestingly, no bone formation was observed in control implants. In conclusion, an engineered transient cartilage template carries all the signals necessary to induce endochondral bone formation in vivo.
AB - The use of biomaterials to replace lost bone has been a common practice for decades. More recently, the demands for bone repair and regeneration have pushed research into the use of cultured cells and growth factors in association with these materials. Here we report a novel approach to engineer new bone using a transient cartilage scaffold to induce endochondral ossification. Chondrocyte/chitosan scaffolds (both a transient cartilage scaffold- experimental-and a permanent cartilage scaffold-control) were prepared and implanted subcutaneously in nude mice. Bone formation was evaluated over a period of 5 months. Mineralization was assessed by Faxitron, micro computed tomography, backscatter electrons, and Fourier transform infrared spectroscopy analyses. Histological analysis provided further information on tissue changes in and around the implanted scaffolds. The deposition of ectopic bone was detected in the surface of the experimental implants as early as 1 month after implantation. After 3 months, bone trabeculae and bone marrow cavities were formed inside the scaffolds. The bone deposited was similar to the bone of the mice vertebra. Interestingly, no bone formation was observed in control implants. In conclusion, an engineered transient cartilage template carries all the signals necessary to induce endochondral bone formation in vivo.
UR - http://www.scopus.com/inward/record.url?scp=64549096039&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=64549096039&partnerID=8YFLogxK
U2 - 10.1089/ten.tea.2008.0052
DO - 10.1089/ten.tea.2008.0052
M3 - Article
C2 - 18759673
AN - SCOPUS:64549096039
SN - 1937-3341
VL - 15
SP - 635
EP - 643
JO - Tissue Engineering - Part A
JF - Tissue Engineering - Part A
IS - 3
ER -