Enhancing coverage in narrow band-IoT using machine learning

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Narrow Band-Internet of Thing (NB-IoT) is a recently proposed technology by 3GPP in Release-13. It provides low energy consumption and wide coverage in order to meet the requirements of its diverse applications that span social, industrial and environmental aspects. Increasing the number of repetitions of the transmission has been selected as a promising approach to enhance the coverage in NB-IoT up to 164 dB in terms of maximum coupling loss for uplink transmissions, which is a significant improvement compared with legacy LTE technologies, especially to serve users in deep coverage. However, a large number of repetitions reduces the system throughput and increases the energy consumption of the IoT devices, which reduces their battery lifetime and increases their maintenance cost. In this work, we propose a new method for enhancing the NB-IoT coverage based on machine learning algorithms. Instead of employing a random spectrum access procedure, dynamic spectrum access can reduce the number of required repetitions, increase the coverage, and reduce the energy consumption.

Original languageEnglish (US)
Title of host publication2018 IEEE Wireless Communications and Networking Conference, WCNC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-6
Number of pages6
ISBN (Electronic)9781538617342
DOIs
StatePublished - Jun 8 2018
Event2018 IEEE Wireless Communications and Networking Conference, WCNC 2018 - Barcelona, Spain
Duration: Apr 15 2018Apr 18 2018

Publication series

NameIEEE Wireless Communications and Networking Conference, WCNC
Volume2018-April
ISSN (Print)1525-3511

Other

Other2018 IEEE Wireless Communications and Networking Conference, WCNC 2018
Country/TerritorySpain
CityBarcelona
Period4/15/184/18/18

Keywords

  • Coverage Enhancement (CE)
  • Dynamic spectrum access
  • Narrow-band Internet of Things (NB-IoT)
  • Reinforcement learning

ASJC Scopus subject areas

  • Engineering(all)

Fingerprint

Dive into the research topics of 'Enhancing coverage in narrow band-IoT using machine learning'. Together they form a unique fingerprint.

Cite this